Suppr超能文献

通过受限近似实现的蒙特卡洛在梅特罗波利斯算法中的扰动界限

Perturbation bounds for Monte Carlo within Metropolis via restricted approximations.

作者信息

Medina-Aguayo Felipe, Rudolf Daniel, Schweizer Nikolaus

机构信息

Department of Mathematics and Statistics, University of Reading Whiteknights, PO Box 220, Reading RG6 6AX, United Kingdom.

Institute for Mathematical Stochastics, Universität Göttingen & Felix-Bernstein-Institute for Mathematical Statistics, Goldschmidtstraße 3-5, 37077 Göttingen, Germany.

出版信息

Stoch Process Their Appl. 2020 Apr;130(4):2200-2227. doi: 10.1016/j.spa.2019.06.015.

Abstract

The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis-Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the th step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.

摘要

metropolis 框架下的蒙特卡罗算法(MCwM),被解释为一种扰动的metropolis - hastings(MH)算法,当目标分布难以处理时,它提供了一种近似采样的方法。假设未扰动的马尔可夫链是几何遍历的,我们给出了扰动的MCwM和未扰动的MH链第步分布之间差异的显式估计。这些界基于马尔可夫链的新扰动结果,这些结果在MCwM框架之外也很有意义。为了应用这些界,我们需要控制两条链转移概率之间的差异,并验证扰动链的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ac/7074005/232740e35198/fx1001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验