Medina-Aguayo Felipe, Rudolf Daniel, Schweizer Nikolaus
Department of Mathematics and Statistics, University of Reading Whiteknights, PO Box 220, Reading RG6 6AX, United Kingdom.
Institute for Mathematical Stochastics, Universität Göttingen & Felix-Bernstein-Institute for Mathematical Statistics, Goldschmidtstraße 3-5, 37077 Göttingen, Germany.
Stoch Process Their Appl. 2020 Apr;130(4):2200-2227. doi: 10.1016/j.spa.2019.06.015.
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis-Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the th step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.
metropolis 框架下的蒙特卡罗算法(MCwM),被解释为一种扰动的metropolis - hastings(MH)算法,当目标分布难以处理时,它提供了一种近似采样的方法。假设未扰动的马尔可夫链是几何遍历的,我们给出了扰动的MCwM和未扰动的MH链第步分布之间差异的显式估计。这些界基于马尔可夫链的新扰动结果,这些结果在MCwM框架之外也很有意义。为了应用这些界,我们需要控制两条链转移概率之间的差异,并验证扰动链的稳定性。