Suppr超能文献

不同糖代谢状态女性两小时血浆葡萄糖及腹部内脏脂肪与骨密度和骨矿物质含量的关系

Relationship of Two-Hour Plasma Glucose and Abdominal Visceral Fat with Bone Mineral Density and Bone Mineral Content in Women with Different Glucose Metabolism Status.

作者信息

Jia Xiaojiao, Liu Lanxiang, Wang Rui, Liu Xiaoli, Liu Binbin, Ma Ning, Lu Qiang

机构信息

Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, People's Republic of China.

出版信息

Diabetes Metab Syndr Obes. 2020 Mar 20;13:851-858. doi: 10.2147/DMSO.S245096. eCollection 2020.

Abstract

BACKGROUND

Several studies have reported the relationship of diabetes mellitus (DM) and obesity with bone mineral density (BMD), but the conclusions remain unclear. This study aimed to provide more information for the relationship of plasma glucose and abdominal visceral fat (AVF) with BMD and bone mineral content (BMC) in women with different glucose metabolism status.

METHODS

Patients were screened by oral glucose tolerance test (OGTT) and were divided into three groups: normal glucose tolerance (NGT, n=132), pre-diabetes mellitus (pre-DM, n=28) and newly diagnosed type 2 DM (T2DM, n=27) groups. Plasma glucose concentrations, anthropometric measurements, body composition, and BMD were measured. Analysis of variance (ANOVA), pearson correlation, and multiple linear regression models were used to evaluate the relationship between BMD, plasma glucose, AVF, and other variables.

RESULTS

The percentage of subjects with osteoporosis or low BMD was 29.9%, and 66.7% subjects in T2DM group were significantly higher than that in the pre-DM (28.6%) and NGT (22.7%) groups (p=0.005 and p<0.001, respectively). Both BMD at femoral neck (FN) and lumbar spine (LS) of T2DM group were lower than those in NGT group (p=0.009 and p=0.003, respectively), and BMC of T2DM group was lower than those of NGT and pre-DM groups (p<0.001). The results of statistical analysis revealed that both two-hour plasma glucose (2-h PG) and age showed negative correlation with BMC, FN BMD, and LS BMD. AVF showed positive correlation with BMC and LS BMD. Furthermore, the lean mass (LM) showed independent positive effects on BMC.

CONCLUSION

Our findings suggest that 1) Age is a strong negative predictor of bone mass. 2) A direct negative effect of increasing 2-h PG might be more prominent at bone mass in women. 3) A moderate increase in AVF is beneficial to bone mass, while excessive increase might be harmful. 4) LM is a positive predictor of BMC.

摘要

背景

多项研究报告了糖尿病(DM)和肥胖与骨密度(BMD)的关系,但结论仍不明确。本研究旨在为不同糖代谢状态女性的血糖和腹部内脏脂肪(AVF)与BMD及骨矿物质含量(BMC)的关系提供更多信息。

方法

通过口服葡萄糖耐量试验(OGTT)对患者进行筛查,并分为三组:糖耐量正常(NGT,n = 132)、糖尿病前期(pre-DM,n = 28)和新诊断的2型糖尿病(T2DM,n = 27)组。测量血糖浓度、人体测量指标、身体成分和BMD。采用方差分析(ANOVA)、Pearson相关性分析和多元线性回归模型评估BMD、血糖、AVF和其他变量之间的关系。

结果

骨质疏松或低骨密度受试者的比例为29.9%,T2DM组中66.7%的受试者显著高于糖尿病前期组(28.6%)和糖耐量正常组(22.7%)(分别为p = 0.005和p < 0.001)。T2DM组股骨颈(FN)和腰椎(LS)的BMD均低于糖耐量正常组(分别为p = 0.009和p = 0.003),T2DM组的BMC低于糖耐量正常组和糖尿病前期组(p < 0.001)。统计分析结果显示,两小时血糖(2-h PG)和年龄与BMC、FN BMD和LS BMD均呈负相关。AVF与BMC和LS BMD呈正相关。此外,去脂体重(LM)对BMC有独立的正向影响。

结论

我们的研究结果表明:1)年龄是骨量的强负性预测因子。2)女性中,2-h PG升高的直接负性作用在骨量方面可能更为突出。3)AVF适度增加对骨量有益,而过度增加可能有害。4)LM是BMC的正向预测因子。

相似文献

引用本文的文献

本文引用的文献

5
Causes of low peak bone mass in women.女性低骨峰值的原因。
Maturitas. 2018 May;111:61-68. doi: 10.1016/j.maturitas.2017.12.010. Epub 2017 Dec 15.
7
Effects of obesity and diabetes on rate of bone density loss.肥胖和糖尿病对骨密度丧失率的影响。
Osteoporos Int. 2018 Jan;29(1):61-67. doi: 10.1007/s00198-017-4223-9. Epub 2017 Sep 15.
8
Diabetes and bone health: latest evidence and clinical implications.糖尿病与骨骼健康:最新证据及临床意义
Ther Adv Musculoskelet Dis. 2017 Mar;9(3):67-74. doi: 10.1177/1759720X16687480. Epub 2017 Jan 24.
9
Obesity, Type 2 Diabetes and Bone in Adults.成人中的肥胖、2型糖尿病与骨骼
Calcif Tissue Int. 2017 May;100(5):528-535. doi: 10.1007/s00223-016-0229-0. Epub 2017 Mar 9.
10
Diabetes and Bone.糖尿病与骨骼
Semin Musculoskelet Radiol. 2016 Jul;20(3):300-304. doi: 10.1055/s-0036-1592366. Epub 2016 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验