Fino R, Byrne R, Softley C A, Sattler M, Schneider G, Popowicz G M
Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Germany.
Comput Struct Biotechnol J. 2020 Feb 28;18:603-611. doi: 10.1016/j.csbj.2020.02.015. eCollection 2020.
NMR-based screening, especially fragment-based drug discovery is a valuable approach in early-stage drug discovery. Monitoring fragment-binding in protein-detected 2D NMR experiments requires analysis of hundreds of spectra to detect chemical shift perturbations (CSPs) in the presence of ligands screened. Computational tools are available that simplify the tracking of CSPs in 2D NMR spectra. However, to the best of our knowledge, an efficient automated tool for the assessment and binning of multiple spectra for ligand binding has not yet been described. We present a novel and fast approach for analysis of multiple 2D HSQC spectra based on machine-learning-driven statistical discrimination. The CSP Analyzer features a C# frontend interfaced to a Python ML classifier. The software allows rapid evaluation of 2D screening data from large number of spectra, reducing user-introduced bias in the evaluation. The CSP Analyzer software package is available on GitHub https://github.com/rubbs14/CSP-Analyzer/releases/tag/v1.0 under the GPL license 3.0 and is free to use for academic and commercial uses.
基于核磁共振(NMR)的筛选,尤其是基于片段的药物发现,是早期药物发现中的一种有价值的方法。在蛋白质检测的二维NMR实验中监测片段结合需要分析数百个光谱,以检测在筛选的配体存在下的化学位移扰动(CSP)。现有的计算工具可简化二维NMR光谱中CSP的跟踪。然而,据我们所知,尚未描述一种用于评估和分类多个配体结合光谱的高效自动化工具。我们提出了一种基于机器学习驱动的统计判别分析多个二维HSQC光谱的新颖快速方法。CSP分析器具有与Python机器学习分类器接口的C#前端。该软件允许快速评估来自大量光谱的二维筛选数据,减少评估中用户引入的偏差。CSP分析器软件包可在GitHub上获取,网址为https://github.com/rubbs14/CSP-Analyzer/releases/tag/v1.0,遵循GPL许可协议3.0,可免费用于学术和商业用途。