Suppr超能文献

药物发现中的核磁共振:识别和验证与生物大分子相互作用配体的实用指南。

NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules.

作者信息

Gossert Alvar D, Jahnke Wolfgang

机构信息

Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland.

Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland.

出版信息

Prog Nucl Magn Reson Spectrosc. 2016 Nov;97:82-125. doi: 10.1016/j.pnmrs.2016.09.001. Epub 2016 Sep 30.

Abstract

Protein-ligand interactions are at the heart of drug discovery research. NMR spectroscopy is an excellent technology to identify and validate protein-ligand interactions. A plethora of NMR methods are available which are powerful, robust and information-rich, but also have pitfalls and limitations. In this review, we will focus on how to choose between different experiments, and assess their strengths and liabilities. We introduce the concept of the validation cross, which helps to categorize experiments according to their information content and to simplify the choice of the right experiment in order to address a specific question. Additionally, we will provide the framework for drawing correct conclusions from experimental results in order to accurately evaluate such interactions. Out of scope for this review are methods for subsequent characterization of the interaction such as quantitative K determination, binding mode analysis, or structure determination.

摘要

蛋白质-配体相互作用是药物发现研究的核心。核磁共振波谱法是鉴定和验证蛋白质-配体相互作用的一项出色技术。有大量的核磁共振方法可供使用,这些方法强大、稳健且信息丰富,但也存在缺陷和局限性。在本综述中,我们将重点关注如何在不同实验之间进行选择,并评估它们的优势和不足。我们引入了验证交叉的概念,这有助于根据实验的信息内容对实验进行分类,并简化正确实验的选择,以便解决特定问题。此外,我们将提供从实验结果得出正确结论的框架,以便准确评估此类相互作用。本综述的范围不包括用于相互作用后续表征的方法,如定量K测定、结合模式分析或结构测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验