Suppr超能文献

Parallel pathway interactions in imipramine metabolism in rats.

作者信息

Chiba M, Fujita S, Suzuki T

机构信息

Department of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Chiba University, Japan.

出版信息

J Pharm Sci. 1988 Nov;77(11):944-7. doi: 10.1002/jps.2600771109.

Abstract

The in vitro metabolic inhibitions between imipramine and its metabolites were investigated in rat liver microsomes. A type of precursor-metabolite interaction similar to that shown with lidocaine was observed in imipramine metabolism. Desipramine competitively inhibited the formation of 2-hydroxyimipramine from imipramine. Similarly, imipramine inhibited the formation of 2-hydroxydesipramine from desipramine. As in the cases of those 2-hydroxylations, a competitive inhibitory relationship also existed in the N-demethylation pathways of imipramine and 2-hydroxyimipramine. Studies on age-associated alterations of the metabolic rates of imipramine and its metabolites in rats demonstrated that N-demethylation activities of imipramine and of 2-hydroxyimipramine, which showed a large sex difference (male greater than female) in young rats, decreased markedly only in old male rats, while 2-hydroxylation activities of imipramine and desipramine, with no sex difference at any age, did not show a marked alteration in either sex. These data strongly suggest that the hydroxylation pathways of imipramine and desipramine and the demethylation pathways of imipramine and 2-hydroxyimipramine are each sharing the same species of cytochrome P-450. The in vivo metabolic inhibition between imipramine and desipramine was examined by simultaneous intraportal infusion of imipramine (25 nmol/min) and desipramine (175 nmol/min). The steady-state concentration of imipramine after simultaneous infusion was increased twofold over that after infusion of imipramine alone, without any change in the free fraction in blood.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验