Suppr超能文献

通过生物催化铁催化分子内环丙烷化反应高度立体选择性合成稠合环丙烷-γ-内酰胺

Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation.

作者信息

Ren Xinkun, Chandgude Ajay L, Fasan Rudi

机构信息

Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States.

出版信息

ACS Catal. 2020 Feb 7;10(3):2308-2313. doi: 10.1021/acscatal.9b05383. Epub 2020 Jan 14.

Abstract

We report the development of an iron-based biocatalytic strategy for the asymmetric synthesis of fused cyclopropane-γ-lactams, which are key structural motifs found in synthetic drugs and bioactive natural products. Using a combination of mutational landscape and iterative site-saturation mutagenesis, sperm whale myoglobin was evolved into a biocatalyst capable of promoting the cyclization of a diverse range of allyl diazoacetamide substrates into the corresponding bicyclic lactams in high yields and with high enantioselectivity (up to 99% ). These biocatalytic transformations can be performed in whole cells and could be leveraged to enable the efficient (chemo)enzymatic construction of chiral cyclopropane-γ-lactams as well as β-cyclopropyl amines and cyclopropane-fused pyrrolidines, as valuable building blocks and synthons for medicinal chemistry and natural product synthesis.

摘要

我们报道了一种基于铁的生物催化策略,用于不对称合成稠合环丙烷-γ-内酰胺,这是合成药物和生物活性天然产物中的关键结构基序。通过结合突变图谱和迭代位点饱和诱变,抹香鲸肌红蛋白被进化为一种生物催化剂,能够以高产率和高对映选择性(高达99%)促进多种烯丙基重氮乙酰胺底物环化生成相应的双环内酰胺。这些生物催化转化可以在全细胞中进行,并可用于高效(化学)酶促构建手性环丙烷-γ-内酰胺以及β-环丙基胺和环丙烷稠合的吡咯烷,作为药物化学和天然产物合成中有价值的构建块和合成子。

相似文献

1
Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation.
ACS Catal. 2020 Feb 7;10(3):2308-2313. doi: 10.1021/acscatal.9b05383. Epub 2020 Jan 14.
2
Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases.
J Am Chem Soc. 2019 Jun 12;141(23):9145-9150. doi: 10.1021/jacs.9b02700. Epub 2019 May 29.
3
An Enzymatic Platform for the Highly Enantioselective and Stereodivergent Construction of Cyclopropyl-δ-lactones.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21634-21639. doi: 10.1002/anie.202007953. Epub 2020 Sep 17.
4
A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones.
J Am Chem Soc. 2021 Feb 10;143(5):2221-2231. doi: 10.1021/jacs.0c09504. Epub 2021 Jan 26.
5
Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions.
Bull Jpn Soc Coord Chem. 2022;80:4-13. doi: 10.4019/bjscc.80.4. Epub 2022 Dec 25.
6
Enantioselective Cyclopropanation of a Wide Variety of Olefins Catalyzed by Ru(II)-Pheox Complexes.
Acc Chem Res. 2016 Oct 18;49(10):2080-2090. doi: 10.1021/acs.accounts.6b00070. Epub 2016 Sep 20.
8
Chiral γ-Lactams by Enantioselective Palladium(0)-Catalyzed Cyclopropane Functionalizations.
Angew Chem Int Ed Engl. 2015 Sep 28;54(40):11826-9. doi: 10.1002/anie.201505916. Epub 2015 Aug 12.
10
Biocatalytic Strategy for Highly Diastereo- and Enantioselective Synthesis of 2,3-Dihydrobenzofuran-Based Tricyclic Scaffolds.
Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10148-10152. doi: 10.1002/anie.201903455. Epub 2019 Jun 24.

引用本文的文献

1
Fused-Linked and Spiro-Linked N-Containing Heterocycles.
Int J Mol Sci. 2025 Aug 1;26(15):7435. doi: 10.3390/ijms26157435.
2
Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation.
Nat Catal. 2024 Jan;7(1):65-76. doi: 10.1038/s41929-023-01068-2. Epub 2023 Dec 6.
3
Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins.
Molecules. 2023 Sep 18;28(18):6683. doi: 10.3390/molecules28186683.
4
Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions.
Bull Jpn Soc Coord Chem. 2022;80:4-13. doi: 10.4019/bjscc.80.4. Epub 2022 Dec 25.
5
Role of mutations in a chemoenzymatic enantiodivergent C(sp)-H insertion: exploring the mechanism and origin of stereoselectivity.
Chem Sci. 2023 Jul 25;14(33):8810-8822. doi: 10.1039/d3sc02788k. eCollection 2023 Aug 23.
6
Cu(ii)-mediated direct intramolecular cyclopropanation of distal olefinic acetate: access to cyclopropane-fused γ-lactones.
Chem Sci. 2023 May 25;14(24):6663-6668. doi: 10.1039/d3sc01752d. eCollection 2023 Jun 21.
8
Highly stereoselective and enantiodivergent synthesis of cyclopropylphosphonates with engineered carbene transferases.
Chem Sci. 2022 Jun 6;13(29):8550-8556. doi: 10.1039/d2sc01965e. eCollection 2022 Jul 29.
9
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
10
Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes.
Chem Sci. 2022 May 16;13(22):6478-6495. doi: 10.1039/d2sc00721e. eCollection 2022 Jun 7.

本文引用的文献

2
Insights into the Mechanism and Enantioselectivity in the Biosynthesis of Ergot Alkaloid Cycloclavine Catalyzed by Aj_EasH from .
Inorg Chem. 2019 Oct 21;58(20):13771-13781. doi: 10.1021/acs.inorgchem.9b01168. Epub 2019 Sep 27.
3
Biocatalytic Strategy for Highly Diastereo- and Enantioselective Synthesis of 2,3-Dihydrobenzofuran-Based Tricyclic Scaffolds.
Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10148-10152. doi: 10.1002/anie.201903455. Epub 2019 Jun 24.
4
Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases.
J Am Chem Soc. 2019 Jun 12;141(23):9145-9150. doi: 10.1021/jacs.9b02700. Epub 2019 May 29.
5
Reusable and highly enantioselective water-soluble Ru(II)--Pheox catalyst for intramolecular cyclopropanation of diazo compounds.
Beilstein J Org Chem. 2019 Feb 6;15:357-363. doi: 10.3762/bjoc.15.31. eCollection 2019.
6
Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions.
J Am Chem Soc. 2018 Dec 5;140(48):16402-16407. doi: 10.1021/jacs.8b09613. Epub 2018 Nov 1.
7
Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis.
Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15852-15856. doi: 10.1002/anie.201810059. Epub 2018 Nov 5.
8
An Artificial Heme Enzyme for Cyclopropanation Reactions.
Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7785-7789. doi: 10.1002/anie.201802946. Epub 2018 May 29.
9
Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes.
ACS Cent Sci. 2018 Mar 28;4(3):372-377. doi: 10.1021/acscentsci.7b00548. Epub 2018 Feb 21.
10
Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
Adv Synth Catal. 2017 Jun 19;359(12):2076-2089. doi: 10.1002/adsc.201700202. Epub 2017 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验