Suppr超能文献

相似文献

1
Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation.
Nat Catal. 2024 Jan;7(1):65-76. doi: 10.1038/s41929-023-01068-2. Epub 2023 Dec 6.
2
Stereoselective Construction of β-, γ-, and δ-Lactam Rings via Enzymatic C-H Amidation.
Res Sq. 2023 Jan 19:rs.3.rs-2429100. doi: 10.21203/rs.3.rs-2429100/v1.
3
Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions.
Bull Jpn Soc Coord Chem. 2022;80:4-13. doi: 10.4019/bjscc.80.4. Epub 2022 Dec 25.
5
Iridium-Catalyzed Enantioselective C(sp)-H Amidation Controlled by Attractive Noncovalent Interactions.
J Am Chem Soc. 2019 May 1;141(17):7194-7201. doi: 10.1021/jacs.9b02811. Epub 2019 Apr 23.
6
Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation.
ACS Catal. 2020 Feb 7;10(3):2308-2313. doi: 10.1021/acscatal.9b05383. Epub 2020 Jan 14.
7
Selective formation of γ-lactams via C-H amidation enabled by tailored iridium catalysts.
Science. 2018 Mar 2;359(6379):1016-1021. doi: 10.1126/science.aap7503.
9
Selective Functionalization of Aliphatic Amines via Myoglobin-catalyzed Carbene N-H Insertion.
Synlett. 2020 Feb;31(3):224-229. doi: 10.1055/s-0039-1690007. Epub 2019 Jul 11.
10
Highly stereoselective and enantiodivergent synthesis of cyclopropylphosphonates with engineered carbene transferases.
Chem Sci. 2022 Jun 6;13(29):8550-8556. doi: 10.1039/d2sc01965e. eCollection 2022 Jul 29.

引用本文的文献

1
Enantioselective C-H amination catalyzed by homoleptic iron salox complexes.
Chem Commun (Camb). 2025 Sep 5. doi: 10.1039/d5cc04627k.
3
Tech-Enhanced Synthesis: Exploring the Synergy between Organic Chemistry and Technology.
J Am Chem Soc. 2025 Aug 13;147(32):28523-28545. doi: 10.1021/jacs.5c10303. Epub 2025 Aug 5.
4
Nonheme Fe 1,3-nitrogen migratases for asymmetric noncanonical amino acid synthesis.
Nat Chem Biol. 2025 Jul 8. doi: 10.1038/s41589-025-01953-w.
9
Photoinduced carbonylative annulation access to β-lactams.
Chem Sci. 2025 Apr 25. doi: 10.1039/d5sc02418h.
10
Site-Selective Carbonylation of Azetidines via Copper-Catalyzed Difluorocarbene Insertion.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202505033. doi: 10.1002/anie.202505033. Epub 2025 Apr 14.

本文引用的文献

1
Late-stage C-H functionalization offers new opportunities in drug discovery.
Nat Rev Chem. 2021 Aug;5(8):522-545. doi: 10.1038/s41570-021-00300-6. Epub 2021 Jul 13.
2
Combined radical and ionic approach for the enantioselective synthesis of β-functionalized amines from alcohols.
Nat Synth. 2022 Jul;1(7):548-557. doi: 10.1038/s44160-022-00107-3. Epub 2022 Jul 13.
3
An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp C-H Functionalization via Intramolecular Carbene Insertion.
J Am Chem Soc. 2022 Jul 6;144(26):11676-11684. doi: 10.1021/jacs.2c03311. Epub 2022 Jun 24.
5
Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450.
Science. 2021 Dec 24;374(6575):1612-1616. doi: 10.1126/science.abk1603. Epub 2021 Dec 23.
6
An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes.
J Am Chem Soc. 2022 Jan 12;144(1):80-85. doi: 10.1021/jacs.1c11340. Epub 2021 Dec 23.
8
Rh(II)-Catalyzed Intermolecular -Aryl Aziridination of Olefins Using Nonactivated N Atom Precursors.
J Am Chem Soc. 2021 Nov 17;143(45):19149-19159. doi: 10.1021/jacs.1c09229. Epub 2021 Nov 8.
9
New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds.
Chembiochem. 2022 Mar 18;23(6):e202100464. doi: 10.1002/cbic.202100464. Epub 2021 Nov 24.
10
Biocatalytic, Intermolecular C-H Bond Functionalization for the Synthesis of Enantioenriched Amides.
Angew Chem Int Ed Engl. 2021 Nov 15;60(47):24864-24869. doi: 10.1002/anie.202110873. Epub 2021 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验