Suppr超能文献

通过具有自由基反应性的辅因子重新设计的卡宾转移酶对缺电子烯烃进行立体选择性环丙烷化反应。

Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity.

作者信息

Carminati Daniela M, Fasan Rudi

机构信息

Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.

出版信息

ACS Catal. 2019 Oct 4;9(10):9683-9697. doi: 10.1021/acscatal.9b02272. Epub 2019 Sep 5.

Abstract

Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% and ). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.

摘要

通过卡宾转移化学,工程改造的肌红蛋白和其他血红素蛋白最近已成为不对称烯烃环丙烷化反应的有前景的催化剂。尽管取得了这一进展,但使用这些体系对贫电子烯烃进行转化已证明极具挑战性。在此,我们描述了一种基于肌红蛋白的卡宾转移酶的设计,该酶结合了非天然的铁卟啉辅因子和轴向配体,作为贫电子烯烃不对称环丙烷化的高效催化剂。使用这种金属酶,一系列富电子和贫电子烯烃都能以高效率和高非对映选择性及对映选择性(高达>99% 及 )进行环丙烷化。机理研究表明,这种卡宾转移酶反应范围的扩大取决于金属中心周围重新配置的配位环境导致的金属卡宾自由基反应性的获得。该体系基于自由基的反应性不同于肌红蛋白和大多数已知有机金属卡宾转移催化剂的亲电反应性。这项工作展示了辅因子重新设计在调节和扩展金属蛋白在非生物反应中的反应性方面的价值,并为贫电子烯烃的不对称环丙烷化提供了一种生物催化解决方案。预计这种生物催化剂表现出的金属卡宾自由基反应性在各种其他合成转化中会很有用。

相似文献

2
Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
Methods Enzymol. 2020;644:35-61. doi: 10.1016/bs.mie.2020.07.007. Epub 2020 Aug 6.
3
Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
J Org Chem. 2018 Jul 20;83(14):7480-7490. doi: 10.1021/acs.joc.8b00946. Epub 2018 Jul 6.
5
Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1744-8. doi: 10.1002/anie.201409928. Epub 2014 Dec 23.
6
Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity.
Angew Chem Int Ed Engl. 2024 Sep 2;63(36):e202403485. doi: 10.1002/anie.202403485. Epub 2024 Jul 4.
8
Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase.
ACS Catal. 2019 Feb 1;9(2):1514-1524. doi: 10.1021/acscatal.8b04073. Epub 2018 Dec 28.
9
Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
Adv Synth Catal. 2017 Jun 19;359(12):2076-2089. doi: 10.1002/adsc.201700202. Epub 2017 Apr 12.
10
Biocatalytic Strategy for Highly Diastereo- and Enantioselective Synthesis of 2,3-Dihydrobenzofuran-Based Tricyclic Scaffolds.
Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10148-10152. doi: 10.1002/anie.201903455. Epub 2019 Jun 24.

引用本文的文献

1
Computational Mechanistic Investigation of Biocatalytic C(sp)-H Insertions with Monosubstituted Carbenes via Engineered Heme Proteins.
ACS Omega. 2025 Jul 5;10(27):29365-29373. doi: 10.1021/acsomega.5c02412. eCollection 2025 Jul 15.
2
Designing Enzymatic Reactivity with an Expanded Palette.
Chembiochem. 2025 Jun 3;26(11):e202500076. doi: 10.1002/cbic.202500076. Epub 2025 Apr 4.
3
A comprehensive mechanistic investigation of sustainable carbene N-H insertion catalyzed by engineered His-ligated heme proteins.
Catal Sci Technol. 2025 Jan 13;15(6):1802-1813. doi: 10.1039/d4cy00999a. eCollection 2025 Mar 17.
4
Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis.
J Am Chem Soc. 2025 Feb 5;147(5):4188-4197. doi: 10.1021/jacs.4c13832. Epub 2025 Jan 22.
5
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
7
Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis.
Chem Rev. 2024 Oct 9;124(19):10877-10923. doi: 10.1021/acs.chemrev.4c00136. Epub 2024 Sep 27.
8
Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles.
J Am Chem Soc. 2024 Jul 24;146(29):19673-19679. doi: 10.1021/jacs.4c06103. Epub 2024 Jul 15.
9
Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center.
Nat Commun. 2024 Jul 8;15(1):5714. doi: 10.1038/s41467-024-50005-9.
10
Noncanonical Amino Acids in Biocatalysis.
Chem Rev. 2024 Jul 24;124(14):8740-8786. doi: 10.1021/acs.chemrev.4c00120. Epub 2024 Jul 3.

本文引用的文献

1
Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase.
ACS Catal. 2019 Feb 1;9(2):1514-1524. doi: 10.1021/acscatal.8b04073. Epub 2018 Dec 28.
2
Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin.
Tetrahedron. 2019 Apr 19;75(16):2357-2363. doi: 10.1016/j.tet.2019.03.009. Epub 2019 Mar 11.
3
Biocatalytic Strategy for Highly Diastereo- and Enantioselective Synthesis of 2,3-Dihydrobenzofuran-Based Tricyclic Scaffolds.
Angew Chem Int Ed Engl. 2019 Jul 22;58(30):10148-10152. doi: 10.1002/anie.201903455. Epub 2019 Jun 24.
4
Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases.
J Am Chem Soc. 2019 Jun 12;141(23):9145-9150. doi: 10.1021/jacs.9b02700. Epub 2019 May 29.
5
Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
Acc Chem Res. 2019 Apr 16;52(4):945-954. doi: 10.1021/acs.accounts.8b00676. Epub 2019 Apr 1.
6
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
7
Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions.
J Am Chem Soc. 2018 Dec 5;140(48):16402-16407. doi: 10.1021/jacs.8b09613. Epub 2018 Nov 1.
8
Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis.
Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15852-15856. doi: 10.1002/anie.201810059. Epub 2018 Nov 5.
9
Catalytic iron-carbene intermediate revealed in a cytochrome carbene transferase.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7308-7313. doi: 10.1073/pnas.1807027115. Epub 2018 Jun 26.
10
Myoglobin-Catalyzed C-H Functionalization of Unprotected Indoles.
Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9911-9915. doi: 10.1002/anie.201804779. Epub 2018 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验