Carminati Daniela M, Fasan Rudi
Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
ACS Catal. 2019 Oct 4;9(10):9683-9697. doi: 10.1021/acscatal.9b02272. Epub 2019 Sep 5.
Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% and ). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.
通过卡宾转移化学,工程改造的肌红蛋白和其他血红素蛋白最近已成为不对称烯烃环丙烷化反应的有前景的催化剂。尽管取得了这一进展,但使用这些体系对贫电子烯烃进行转化已证明极具挑战性。在此,我们描述了一种基于肌红蛋白的卡宾转移酶的设计,该酶结合了非天然的铁卟啉辅因子和轴向配体,作为贫电子烯烃不对称环丙烷化的高效催化剂。使用这种金属酶,一系列富电子和贫电子烯烃都能以高效率和高非对映选择性及对映选择性(高达>99% 及 )进行环丙烷化。机理研究表明,这种卡宾转移酶反应范围的扩大取决于金属中心周围重新配置的配位环境导致的金属卡宾自由基反应性的获得。该体系基于自由基的反应性不同于肌红蛋白和大多数已知有机金属卡宾转移催化剂的亲电反应性。这项工作展示了辅因子重新设计在调节和扩展金属蛋白在非生物反应中的反应性方面的价值,并为贫电子烯烃的不对称环丙烷化提供了一种生物催化解决方案。预计这种生物催化剂表现出的金属卡宾自由基反应性在各种其他合成转化中会很有用。