Suppr超能文献

在有氧条件下,利用一种含有铁-二氢卟吩e6辅因子的人工酶进行立体选择性烯烃环丙烷化反应。

Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor.

作者信息

Sreenilayam Gopeekrishnan, Moore Eric J, Steck Viktoria, Fasan Rudi

机构信息

Department of Chemistry, University of Rochester, Rochester NY 14627, United States.

出版信息

ACS Catal. 2017;7(11):7629-7633. doi: 10.1021/acscatal.7b02583. Epub 2017 Oct 9.

Abstract

Myoglobin has recently emerged as a promising biocatalyst for catalyzing carbene-mediated cyclopropanation, a synthetically valuable transformation not found in nature. Having naturally evolved for binding dioxygen, the carbene transferase activity of this metalloprotein is severely inhibited by it, imposing the need for strictly anaerobic conditions to conduct these reactions. In this report, we describe how substitution of the native heme cofactor with an iron-chlorin e6 complex enabled the development of a biocatalyst capable of promoting the cyclopropanation of vinylarenes with high catalytic efficiency (up to 6,970 TON), turnover rate (>2,000 turnovers/min), and stereoselectivity (up to 99% and ) in the presence of oxygen. The artificial metalloenzyme can be recombinantly expressed in bacterial cells, enabling its application also in the context of whole-cell biotransformations. This work makes available a robust and easy-to-use oxygen-tolerant biocatalyst for asymmetric cyclopropanations and demonstrates the value of porphyrin ligand substitution as a strategy for tuning and enhancing the catalytic properties of hemoproteins in the context of abiological reactions.

摘要

肌红蛋白最近成为一种有前景的生物催化剂,可用于催化卡宾介导的环丙烷化反应,这是一种自然界中不存在但具有合成价值的转化反应。由于这种金属蛋白是自然进化用于结合双原子氧的,其卡宾转移酶活性会受到双原子氧的严重抑制,因此需要严格的厌氧条件来进行这些反应。在本报告中,我们描述了用铁-二氢卟吩e6配合物取代天然血红素辅因子,如何实现了一种生物催化剂的开发,该生物催化剂能够在有氧条件下以高催化效率(高达6970个催化转化数)、周转速率(>2000次周转/分钟)和立体选择性(高达99%)促进乙烯基芳烃的环丙烷化反应。这种人工金属酶可以在细菌细胞中重组表达,使其也能应用于全细胞生物转化。这项工作为不对称环丙烷化反应提供了一种强大且易于使用的耐氧生物催化剂,并证明了卟啉配体取代作为一种在非生物反应中调节和增强血红蛋白催化性能的策略的价值。

相似文献

3
Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
Acc Chem Res. 2019 Apr 16;52(4):945-954. doi: 10.1021/acs.accounts.8b00676. Epub 2019 Apr 1.
4
Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
J Org Chem. 2018 Jul 20;83(14):7480-7490. doi: 10.1021/acs.joc.8b00946. Epub 2018 Jul 6.
5
Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
Methods Enzymol. 2020;644:35-61. doi: 10.1016/bs.mie.2020.07.007. Epub 2020 Aug 6.
6
Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase.
ACS Catal. 2019 Feb 1;9(2):1514-1524. doi: 10.1021/acscatal.8b04073. Epub 2018 Dec 28.
7
Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
Adv Synth Catal. 2017 Jun 19;359(12):2076-2089. doi: 10.1002/adsc.201700202. Epub 2017 Apr 12.
8
Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
Nature. 2016 Jun 23;534(7608):534-7. doi: 10.1038/nature17968. Epub 2016 Jun 13.
9
Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1744-8. doi: 10.1002/anie.201409928. Epub 2014 Dec 23.
10
Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin.
Tetrahedron. 2019 Apr 19;75(16):2357-2363. doi: 10.1016/j.tet.2019.03.009. Epub 2019 Mar 11.

引用本文的文献

1
Computational Mechanistic Investigation of Biocatalytic C(sp)-H Insertions with Monosubstituted Carbenes via Engineered Heme Proteins.
ACS Omega. 2025 Jul 5;10(27):29365-29373. doi: 10.1021/acsomega.5c02412. eCollection 2025 Jul 15.
2
Designing Enzymatic Reactivity with an Expanded Palette.
Chembiochem. 2025 Jun 3;26(11):e202500076. doi: 10.1002/cbic.202500076. Epub 2025 Apr 4.
4
Stereodivergent Synthesis of Pyridyl Cyclopropanes via Enzymatic Activation of Pyridotriazoles.
J Am Chem Soc. 2024 Jul 24;146(29):19673-19679. doi: 10.1021/jacs.4c06103. Epub 2024 Jul 15.
5
Myoglobin-Catalyzed Azide Reduction Proceeds via an Anionic Metal Amide Intermediate.
J Am Chem Soc. 2024 Jan 24;146(3):1957-1966. doi: 10.1021/jacs.3c09279. Epub 2024 Jan 9.
6
Multifaceted personality and roles of heme enzymes in industrial biotechnology.
3 Biotech. 2023 Dec;13(12):389. doi: 10.1007/s13205-023-03804-8. Epub 2023 Nov 7.
7
Cellular Validation of a Chemically Improved Inhibitor Identifies Monoubiquitination on OTUB2.
ACS Chem Biol. 2023 Sep 15;18(9):2003-2013. doi: 10.1021/acschembio.3c00227. Epub 2023 Aug 29.
8
Highly stereoselective and enantiodivergent synthesis of cyclopropylphosphonates with engineered carbene transferases.
Chem Sci. 2022 Jun 6;13(29):8550-8556. doi: 10.1039/d2sc01965e. eCollection 2022 Jul 29.
9
YfeX - A New Platform for Carbene Transferase Development with High Intrinsic Reactivity.
Chemistry. 2022 Nov 21;28(65):e202201474. doi: 10.1002/chem.202201474. Epub 2022 Sep 23.
10
Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors.
Chembiochem. 2022 Sep 16;23(18):e202200197. doi: 10.1002/cbic.202200197. Epub 2022 Jul 28.

本文引用的文献

1
Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
Adv Synth Catal. 2017 Jun 19;359(12):2076-2089. doi: 10.1002/adsc.201700202. Epub 2017 Apr 12.
2
P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides.
ACS Chem Biol. 2017 Jul 21;12(7):1726-1731. doi: 10.1021/acschembio.7b00358. Epub 2017 Jun 1.
5
DNA-Accelerated Catalysis of Carbene-Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid.
Angew Chem Int Ed Engl. 2016 Nov 2;55(45):14136-14140. doi: 10.1002/anie.201608121. Epub 2016 Oct 12.
6
Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle-Kirmse Reaction.
Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13562-13566. doi: 10.1002/anie.201607278. Epub 2016 Sep 20.
7
An Evolved Orthogonal Enzyme/Cofactor Pair.
J Am Chem Soc. 2016 Sep 28;138(38):12451-8. doi: 10.1021/jacs.6b05847. Epub 2016 Sep 16.
8
Designing 'Totem' C2 -Symmetrical Iron Porphyrin Catalysts for Stereoselective Cyclopropanations.
Chemistry. 2016 Sep 12;22(38):13599-612. doi: 10.1002/chem.201602289. Epub 2016 Aug 24.
9
Computation Sheds Insight into Iron Porphyrin Carbenes' Electronic Structure, Formation, and N-H Insertion Reactivity.
J Am Chem Soc. 2016 Aug 3;138(30):9597-610. doi: 10.1021/jacs.6b04636. Epub 2016 Jul 20.
10
The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules.
J Med Chem. 2016 Oct 13;59(19):8712-8756. doi: 10.1021/acs.jmedchem.6b00472. Epub 2016 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验