Suppr超能文献

用于提高胸部X光片中肺结核检测的特定模态深度学习模型集成

Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.

作者信息

Rajaraman Sivaramakrishnan, Antani Sameer K

机构信息

Lister Hill National Center for Biomedical Communications, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894 USA.

出版信息

IEEE Access. 2020;8:27318-27326. doi: 10.1109/access.2020.2971257. Epub 2020 Feb 3.

Abstract

The proposed study evaluates the efficacy of knowledge transfer gained through an ensemble of modality-specific deep learning models toward improving the state-of-the-art in Tuberculosis (TB) detection. A custom convolutional neural network (CNN) and selected popular pretrained CNNs are trained to learn modality-specific features from large-scale publicly available chest x-ray (CXR) collections including (i) RSNA dataset (normal = 8851, abnormal = 17833), (ii) Pediatric pneumonia dataset (normal = 1583, abnormal = 4273), and (iii) Indiana dataset (normal = 1726, abnormal = 2378). The knowledge acquired through modality-specific learning is transferred and fine-tuned for TB detection on the publicly available Shenzhen CXR collection (normal = 326, abnormal =336). The predictions of the best performing models are combined using different ensemble methods to demonstrate improved performance over any individual constituent model in classifying TB-infected and normal CXRs. The models are evaluated through cross-validation (n = 5) at the patient-level with an aim to prevent overfitting, improve robustness and generalization. It is observed that a stacked ensemble of the top-3 retrained models demonstrates promising performance (accuracy: 0.941; 95% confidence interval (CI): [0.899, 0.985], area under the curve (AUC): 0.995; 95% CI: [0.945, 1.00]). One-way ANOVA analyses show there are no statistically significant differences in accuracy ( = .759) and AUC ( = .831) among the ensemble methods. Knowledge transferred through modality-specific learning of relevant features helped improve the classification. The ensemble model resulted in reduced prediction variance and sensitivity to training data fluctuations. Results from their combined use are superior to the state-of-the-art.

摘要

拟议的研究评估了通过一组特定模态深度学习模型获得的知识转移对改进结核病(TB)检测的当前技术水平的效果。训练了一个定制的卷积神经网络(CNN)和选定的流行预训练CNN,以从大规模公开可用的胸部X光(CXR)数据集中学习特定模态特征,这些数据集包括:(i)RSNA数据集(正常 = 8851,异常 = 17833),(ii)儿科肺炎数据集(正常 = 1583,异常 = 4273),以及(iii)印第安纳数据集(正常 = 1726,异常 = 2378)。通过特定模态学习获得的知识被转移并在公开可用的深圳CXR数据集(正常 = 326,异常 = 336)上针对TB检测进行微调。使用不同的集成方法组合表现最佳的模型的预测结果,以证明在对TB感染和正常CXR进行分类时,其性能优于任何单个组成模型。通过在患者层面进行交叉验证(n = 5)来评估模型,目的是防止过拟合、提高稳健性和泛化能力。观察到前3个重新训练模型的堆叠集成表现出有前景的性能(准确率:0.941;95%置信区间(CI):[0.899, 0.985],曲线下面积(AUC):0.995;95% CI:[0.945, 1.00])。单向方差分析表明,集成方法之间在准确率( = 0.759)和AUC( = 0.831)方面没有统计学上的显著差异。通过对相关特征进行特定模态学习转移的知识有助于改进分类。集成模型降低了预测方差以及对训练数据波动的敏感性。它们组合使用的结果优于当前技术水平。

相似文献

1
Modality-specific deep learning model ensembles toward improving TB detection in chest radiographs.
IEEE Access. 2020;8:27318-27326. doi: 10.1109/access.2020.2971257. Epub 2020 Feb 3.
2
Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-rays.
IEEE Access. 2020;8:115041-115050. doi: 10.1109/access.2020.3003810. Epub 2020 Jun 19.
3
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers.
Front Genet. 2022 Feb 24;13:864724. doi: 10.3389/fgene.2022.864724. eCollection 2022.
5
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings.
Diagnostics (Basel). 2021 May 7;11(5):840. doi: 10.3390/diagnostics11050840.
7
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images.
Pol J Radiol. 2022 Feb 28;87:e118-e124. doi: 10.5114/pjr.2022.113435. eCollection 2022.
9
A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest X-rays.
Diagnostics (Basel). 2022 Jun 11;12(6):1442. doi: 10.3390/diagnostics12061442.
10
Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1238-1241. doi: 10.1109/EMBC44109.2020.9176517.

引用本文的文献

2
A hybrid approach for automatic segmentation and classification to detect tuberculosis.
Digit Health. 2024 Aug 14;10:20552076241271869. doi: 10.1177/20552076241271869. eCollection 2024 Jan-Dec.
3
YOLOv8's advancements in tuberculosis identification from chest images.
Front Big Data. 2024 Jun 27;7:1401981. doi: 10.3389/fdata.2024.1401981. eCollection 2024.
4
Deep Learning-Based Classification and Semantic Segmentation of Lung Tuberculosis Lesions in Chest X-ray Images.
Diagnostics (Basel). 2024 Apr 30;14(9):952. doi: 10.3390/diagnostics14090952.
5
Deep transfer learning with fuzzy ensemble approach for the early detection of breast cancer.
BMC Med Imaging. 2024 Apr 8;24(1):82. doi: 10.1186/s12880-024-01267-8.
6
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting.
Front Artif Intell. 2023 Oct 9;6:1232640. doi: 10.3389/frai.2023.1232640. eCollection 2023.
7
Review on chest pathogies detection systems using deep learning techniques.
Artif Intell Rev. 2023 Mar 20:1-47. doi: 10.1007/s10462-023-10457-9.
8
AI-based radiodiagnosis using chest X-rays: A review.
Front Big Data. 2023 Apr 6;6:1120989. doi: 10.3389/fdata.2023.1120989. eCollection 2023.
9
Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection.
Diagnostics (Basel). 2023 Mar 11;13(6):1068. doi: 10.3390/diagnostics13061068.
10
Automatic Detection of Tuberculosis Using VGG19 with Seagull-Algorithm.
Life (Basel). 2022 Nov 11;12(11):1848. doi: 10.3390/life12111848.

本文引用的文献

1
Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible Pneumonia.
Radiol Artif Intell. 2019 Jan 30;1(1):e180041. doi: 10.1148/ryai.2019180041. eCollection 2019 Jan.
3
Sequence-based bacterial small RNAs prediction using ensemble learning strategies.
BMC Bioinformatics. 2018 Dec 21;19(Suppl 20):503. doi: 10.1186/s12859-018-2535-1.
4
SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions.
PLoS Comput Biol. 2018 Dec 11;14(12):e1006616. doi: 10.1371/journal.pcbi.1006616. eCollection 2018 Dec.
6
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.
Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.
7
Pre-trained convolutional neural networks as feature extractors for tuberculosis detection.
Comput Biol Med. 2017 Oct 1;89:135-143. doi: 10.1016/j.compbiomed.2017.08.001. Epub 2017 Aug 4.
8
Overview of deep learning in medical imaging.
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.
9
ANOVA and the variance homogeneity assumption: Exploring a better gatekeeper.
Br J Math Stat Psychol. 2018 Feb;71(1):1-12. doi: 10.1111/bmsp.12103. Epub 2017 Jun 1.
10
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验