Suppr超能文献

胸部X光肺部区域检测中域转移的跨数据集分析

Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection.

作者信息

Xue Zhiyun, Yang Feng, Rajaraman Sivaramakrishnan, Zamzmi Ghada, Antani Sameer

机构信息

Computational Health Research Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

Diagnostics (Basel). 2023 Mar 11;13(6):1068. doi: 10.3390/diagnostics13061068.

Abstract

Domain shift is one of the key challenges affecting reliability in medical imaging-based machine learning predictions. It is of significant importance to investigate this issue to gain insights into its characteristics toward determining controllable parameters to minimize its impact. In this paper, we report our efforts on studying and analyzing domain shift in lung region detection in chest radiographs. We used five chest X-ray datasets, collected from different sources, which have manual markings of lung boundaries in order to conduct extensive experiments toward this goal. We compared the characteristics of these datasets from three aspects: information obtained from metadata or an image header, image appearance, and features extracted from a pretrained model. We carried out experiments to evaluate and compare model performances within each dataset and across datasets in four scenarios using different combinations of datasets. We proposed a new feature visualization method to provide explanations for the applied object detection network on the obtained quantitative results. We also examined chest X-ray modality-specific initialization, catastrophic forgetting, and model repeatability. We believe the observations and discussions presented in this work could help to shed some light on the importance of the analysis of training data for medical imaging machine learning research, and could provide valuable guidance for domain shift analysis.

摘要

域偏移是影响基于医学成像的机器学习预测可靠性的关键挑战之一。研究这个问题对于深入了解其特征以确定可控参数以最小化其影响具有重要意义。在本文中,我们报告了我们在研究和分析胸部X光片中肺区域检测中的域偏移方面所做的工作。我们使用了从不同来源收集的五个胸部X光数据集,这些数据集具有肺边界的手动标记,以便朝着这个目标进行广泛的实验。我们从三个方面比较了这些数据集的特征:从元数据或图像头中获得的信息、图像外观以及从预训练模型中提取的特征。我们进行了实验,以评估和比较在四种场景下每个数据集内以及跨数据集使用不同数据集组合时的模型性能。我们提出了一种新的特征可视化方法,以便对应用的目标检测网络在获得的定量结果上进行解释。我们还研究了胸部X光模态特定的初始化、灾难性遗忘和模型可重复性。我们相信这项工作中提出的观察和讨论有助于阐明训练数据分析对于医学成像机器学习研究的重要性,并可为域偏移分析提供有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea55/10047562/24b50ed71e96/diagnostics-13-01068-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验