Suppr超能文献

合成孔径雷达与光学卫星数据融合用于玉米生物量估算

Integration of synthetic aperture radar and optical satellite data for corn biomass estimation.

作者信息

Hosseini Mehdi, McNairn Heather, Mitchell Scott, Robertson Laura Dingle, Davidson Andrew, Homayouni Saeid

机构信息

Geomatics and Landscape Ecology Laboratory, Department of Geography and Environmental Studies, Carleton University, Ottawa, Canada.

Department of Geographical Sciences, University of Maryland, College Park, MD, USA.

出版信息

MethodsX. 2020 Mar 13;7:100857. doi: 10.1016/j.mex.2020.100857. eCollection 2020.

Abstract

Efforts to use satellites to monitor the condition and productivity of crops, although extensive, can be challenging to operationalize at field scales in part due to low frequency revisit of higher resolution space-based sensors, in the context of an actively growing crop canopy. The presence of clouds and cloud shadows further impedes the exploitation of high resolution optical sensors for operational monitoring of crop development. The objective of this research was to present an option to facilitate greater temporal observing opportunities to monitor the accumulation of corn biomass, by integrating biomass products from Synthetic Aperture Radar (SAR) and optical satellite sensors. To accomplish this integration, a transfer function was developed using a Neural Network algorithm to relate estimated corn biomass from SAR to that estimated from optical data. With this approach, end users can exploit biomass products to monitor corn development, regardless of the source of satellite data.•The Water Cloud Model (WCM) was calibrated or parametrized for horizontal transmit and horizontal received (HH) and horizontal transmit and vertical received (HV) C-band SAR backscatter using a least square algorithm.•Biomass and volumetric soil moisture were estimated from dual-polarized RADARSAT-2 images without any ancillary input data.•A feed forward backpropagation Neural Network algorithm was trained as a transfer function between the biomass estimates from RADARSAT-2 and the biomass estimates from RapidEye.

摘要

利用卫星监测作物状况和生产力的工作虽然广泛,但在田间尺度上实施可能具有挑战性,部分原因是在作物冠层快速生长的情况下,高分辨率天基传感器的重访频率较低。云层和云影的存在进一步阻碍了利用高分辨率光学传感器对作物生长进行业务监测。本研究的目的是提出一种选择,通过整合合成孔径雷达(SAR)和光学卫星传感器的生物量产品,增加监测玉米生物量积累的时间观测机会。为实现这种整合,使用神经网络算法开发了一个传递函数,将SAR估算的玉米生物量与光学数据估算的生物量联系起来。通过这种方法,终端用户可以利用生物量产品监测玉米生长,而无需考虑卫星数据的来源。

• 使用最小二乘法算法对水平发射和水平接收(HH)以及水平发射和垂直接收(HV)C波段SAR后向散射的水云模型(WCM)进行校准或参数化。

• 从双极化RADARSAT-2图像中估算生物量和土壤体积含水量,无需任何辅助输入数据。

• 训练前馈反向传播神经网络算法作为RADARSAT-2生物量估算值与RapidEye生物量估算值之间的传递函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be32/7115162/af3e39640e77/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验