Betancur-Herrera David E, Muñoz-Galeano Nicolas
Grupo en Manejo Eficiente de la Energía (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia.
Data Brief. 2020 Mar 5;30:105375. doi: 10.1016/j.dib.2020.105375. eCollection 2020 Jun.
The data presented in this paper are related to the paper entitled "A Numerical Method for Solving Caputo's and Riemann-Liouville's Fractional Differential Equations which includes multi-order fractional derivatives and variable coefficients", available in the "Communications in Nonlinear Science and Numerical Simulation" journal. Here, data are included for three of the four examples of Fractional Differential Equation (FDE) reported in [1], the other data is already available in [1]. Data for each example contain: the interval of the solution, the solution by using the proposed method, the analytic solution and the absolute error. Data were obtained through Octave 5.1.0 simulations. For a better comprehension of the data, a pseudo-code of three stages and nine steps is included.
本文所呈现的数据与发表在《非线性科学与数值模拟通讯》期刊上的题为《一种求解包含多阶分数阶导数和变系数的卡普托型与黎曼-刘维尔型分数阶微分方程的数值方法》的论文相关。此处包含了文献[1]中报道的四个分数阶微分方程(FDE)示例中的三个示例的数据,其他数据已在[1]中给出。每个示例的数据包括:解的区间、使用所提方法得到的解、解析解以及绝对误差。数据是通过Octave 5.1.0模拟获得的。为了更好地理解这些数据,还包含了一个由三个阶段和九个步骤组成的伪代码。