Suppr超能文献

用于治疗罕见肝脏疾病的基因组编辑技术。

Genome editing technologies to treat rare liver diseases.

作者信息

Trevisan Marta, Masi Giulia, Palù Giorgio

机构信息

Department of Molecular Medicine, University of Padova, Padova, Italy.

出版信息

Transl Gastroenterol Hepatol. 2020 Apr 5;5:23. doi: 10.21037/tgh.2019.10.10. eCollection 2020.

Abstract

Liver has a central role in protein and lipid metabolism, and diseases involving hepatocytes have often repercussions on multiple organs and systems. Hepatic disorders are frequently characterized by production of defective or non-functional proteins, and traditional gene therapy approaches have been attempted for years to restore adequate protein levels through delivery of transgenes. Recently, many different genome editing platforms have been developed aimed at correcting at DNA level the defects underlying the diseases. In this Review we discuss the latest applications of these tools applied to develop therapeutic strategies for rare liver disorders, in particular updating the literature with the most recent strategies relying on base editors technology.

摘要

肝脏在蛋白质和脂质代谢中起核心作用,涉及肝细胞的疾病常常会对多个器官和系统产生影响。肝脏疾病的特征通常是产生有缺陷或无功能的蛋白质,多年来人们一直尝试采用传统基因治疗方法,通过转基因传递来恢复足够的蛋白质水平。最近,人们开发了许多不同的基因组编辑平台,旨在在DNA水平上纠正导致疾病的缺陷。在本综述中,我们讨论了这些工具在开发罕见肝脏疾病治疗策略方面的最新应用,特别是用基于碱基编辑器技术的最新策略更新文献。

相似文献

1
Genome editing technologies to treat rare liver diseases.
Transl Gastroenterol Hepatol. 2020 Apr 5;5:23. doi: 10.21037/tgh.2019.10.10. eCollection 2020.
2
Therapeutic editing of hepatocyte genome in vivo.
J Hepatol. 2017 Oct;67(4):818-828. doi: 10.1016/j.jhep.2017.05.012. Epub 2017 May 17.
3
Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
Curr Cardiol Rep. 2018 Jun 2;20(7):58. doi: 10.1007/s11886-018-0998-3.
4
CRISPR base editors: genome editing without double-stranded breaks.
Biochem J. 2018 Jun 11;475(11):1955-1964. doi: 10.1042/BCJ20170793.
5
Precise A•T to G•C base editing in the zebrafish genome.
BMC Biol. 2018 Nov 20;16(1):139. doi: 10.1186/s12915-018-0609-1.
6
In vivo genome editing targeted towards the female reproductive system.
Arch Pharm Res. 2018 Sep;41(9):898-910. doi: 10.1007/s12272-018-1053-z. Epub 2018 Jul 4.
7
Genome editing in cardiovascular diseases.
Nat Rev Cardiol. 2017 Jan;14(1):11-20. doi: 10.1038/nrcardio.2016.139. Epub 2016 Sep 9.
8
CRISPR editing in biological and biomedical investigation.
J Cell Physiol. 2018 May;233(5):3875-3891. doi: 10.1002/jcp.26141. Epub 2017 Sep 7.
9
Genome Editing for the Study of Cardiovascular Diseases.
Curr Cardiol Rep. 2017 Mar;19(3):22. doi: 10.1007/s11886-017-0830-5.
10
Genetic-Based Approaches to Inherited Metabolic Liver Diseases.
Hum Gene Ther. 2019 Oct;30(10):1190-1203. doi: 10.1089/hum.2019.140.

引用本文的文献

1
Emerging trends in virus and virus-like particle gene therapy delivery to the brain.
Mol Ther Nucleic Acids. 2024 Jul 19;35(3):102280. doi: 10.1016/j.omtn.2024.102280. eCollection 2024 Sep 10.
2
Lipid-nanoparticle-enabled nucleic acid therapeutics for liver disorders.
Acta Pharm Sin B. 2024 Jul;14(7):2885-2900. doi: 10.1016/j.apsb.2024.04.015. Epub 2024 Apr 22.
4
Lethality rescue and long-term amelioration of a citrullinemia type I mouse model by neonatal gene-targeting combined to SaCRISPR-Cas9.
Mol Ther Methods Clin Dev. 2023 Aug 28;31:101103. doi: 10.1016/j.omtm.2023.08.022. eCollection 2023 Dec 14.
5
From Puppies to adults: editing of hepatocytes in a canine model of glycogen storage disease type Ia.
Mol Ther Methods Clin Dev. 2023 May 9;29:347-349. doi: 10.1016/j.omtm.2023.04.006. eCollection 2023 Jun 8.
6
Promoterless Gene Targeting Approach Combined to CRISPR/Cas9 Efficiently Corrects Hemophilia B Phenotype in Neonatal Mice.
Front Genome Ed. 2022 Mar 11;4:785698. doi: 10.3389/fgeed.2022.785698. eCollection 2022.
7
Rare and undiagnosed liver diseases: challenges and opportunities.
Transl Gastroenterol Hepatol. 2021 Apr 5;6:18. doi: 10.21037/tgh-2020-05. eCollection 2021.
8
Base editing: advances and therapeutic opportunities.
Nat Rev Drug Discov. 2020 Dec;19(12):839-859. doi: 10.1038/s41573-020-0084-6. Epub 2020 Oct 19.

本文引用的文献

1
Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9.
Stem Cell Reports. 2019 Jun 11;12(6):1242-1249. doi: 10.1016/j.stemcr.2019.04.016. Epub 2019 May 16.
2
Induced Pluripotent Stem Cell Derivation and Ex Vivo Gene Correction Using a Mucopolysaccharidosis Type 1 Disease Mouse Model.
Stem Cells Int. 2019 Apr 1;2019:6978303. doi: 10.1155/2019/6978303. eCollection 2019.
4
Hepatocyte Reprograming Promotes Homology-Directed DNA Repair to Correct Metabolic Disease in Mice After Transplantation.
Hepatol Commun. 2019 Feb 15;3(4):558-573. doi: 10.1002/hep4.1315. eCollection 2019 Apr.
6
Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice.
Science. 2019 Apr 19;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub 2019 Feb 28.
7
Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos.
Science. 2019 Apr 19;364(6437):289-292. doi: 10.1126/science.aav9973. Epub 2019 Feb 28.
8
Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9.
J Control Release. 2019 Mar 28;298:128-141. doi: 10.1016/j.jconrel.2019.02.009. Epub 2019 Feb 13.
9
In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model.
BMC Biol. 2019 Jan 15;17(1):4. doi: 10.1186/s12915-018-0624-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验