Suppr超能文献

含WW结构域蛋白在肿瘤生物学和疾病中的功能作用:对其在泛素-蛋白酶体系统中作用的见解

Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system.

作者信息

Huang Shenq-Shyang, Hsu Li-Jin, Chang Nan-Shan

机构信息

Graduate Program of Biotechnology in Medicine Institute of Molecular and Cellular Biology National Tsing Hua University Hsinchu Taiwan, ROC.

Department of Medical Laboratory Science and Biotechnology National Cheng Kung University College of Medicine Tainan Taiwan, ROC.

出版信息

FASEB Bioadv. 2020 Feb 21;2(4):234-253. doi: 10.1096/fba.2019-00060. eCollection 2020 Apr.

Abstract

The ubiquitin-proteasome system (UPS) governs the protein degradation process and balances proteostasis and cellular homeostasis. It is a well-controlled mechanism, in which removal of the damaged or excessive proteins is essential in driving signal pathways for cell survival or death. Accumulation of damaged proteins and failure in removal may contribute to disease initiation such as in cancers and neurodegenerative diseases. In this notion, specific protein-protein interaction is essential for the recognition of targeted proteins in UPS. WW domain plays an indispensable role in the protein-protein interactions during signaling. Among the 51 WW domain-containing proteins in the human proteomics, near one-quarter of them are involved in the UPS, suggesting that WW domains are crucial modules for driving the protein-protein binding and subsequent ubiquitination and degradation. In this review, we detail a broad spectrum of WW domains in protein-protein recognition, signal transduction, and relevance to diseases. New perspectives in dissecting the molecular interactions are provided.

摘要

泛素-蛋白酶体系统(UPS)调控蛋白质降解过程,维持蛋白质稳态和细胞内环境稳定。这是一个受到良好控制的机制,其中清除受损或过量的蛋白质对于驱动细胞存活或死亡的信号通路至关重要。受损蛋白质的积累和清除失败可能导致疾病的发生,如癌症和神经退行性疾病。基于此观点,特异性蛋白质-蛋白质相互作用对于UPS中靶向蛋白质的识别至关重要。WW结构域在信号传导过程中的蛋白质-蛋白质相互作用中发挥着不可或缺的作用。在人类蛋白质组学中含有的51种含WW结构域的蛋白质中,近四分之一参与了UPS,这表明WW结构域是驱动蛋白质-蛋白质结合以及随后的泛素化和降解的关键模块。在本综述中,我们详细阐述了WW结构域在蛋白质-蛋白质识别、信号转导以及与疾病相关性方面的广泛作用。同时提供了剖析分子相互作用的新视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ac/7133736/769dd73974e5/FBA2-2-234-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验