Suppr超能文献

Biomimetic strategy to stabilize the mechanical properties of caries-affected dentin matrix: A 12-month in vitro study.

作者信息

Castellan Carina S, Bedran-Russo Ana K

机构信息

Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.

Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA,

出版信息

Am J Dent. 2020 Apr;33(2):64-68.

Abstract

PURPOSE

To evaluate the effect of dentin biomodification on the long-term strength of sound and caries-affected (CA) dentin as a strategy to stabilize the dentin matrix. The biomodification strategy utilized a naturally occurring proanthocyanidin-rich Vitis vinifera grape seeds (Vv), and compared with glutaraldehyde (GD).

METHODS

Dentin from sound and carious human molars were sectioned from mid-coronal dentin. The temperature denaturation (Td) was assessed using differential scanning calorimetry in sealed pans. The inhibitory effect of the agents on the activity of recombinant MMP-2 and -9 were assessed using colorimetric assay. The ultimate tensile strength (UTS) of demineralized dentin were determined 24 hours after treatment and after 12 months storage in simulated body fluid. Data were statistically analyzed using ANOVA and post-hoc tests ( α= 0.05).

RESULTS

There was no statistically significant difference in the Td between sound and CA dentin (P= 0.140); however, Vv and GD significantly increased the Td of both substrates (P< 0.001), indicating formation of collagen cross-linking. The activity of MMP-2 and MMP-9 were reduced by Vv and GD in a concentration dependent manner. The UTS of dentin matrix was significantly affected by treatments and storage times (P< 0.001). After a 12-month period, a significant decrease in UTS was observed for sound and CA, with complete solubilization of the CA dentin matrix. Vv and GD stabilized the UTS of both dentin substrates (P< 0.05). Sound and CA dentin matrix were susceptible to degradation after the 12-month period. Degradation of dentin matrix due to endogenous proteases activity was more pronounced in CA dentin. Dentin biomodification strategies increased the thermal stability and enhanced the long-term mechanical properties of both sound and CA dentin matrix.

CLINICAL SIGNIFICANCE

Carious dentin matrix is more susceptible to breakdown over time than sound dentin; however, the degradation process can be impaired by dentin biomodification. This biomimetic strategy increases the long-term tensile strength of the dentin matrix. Reinforcement of caries-affected dentin may increase longevity of adhesive interfaces.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验