Ghali George Zaki, Ghali Michael George Zaki
United States Environmental Protection Agency, Arlington, Virginia, 22202, USA.
Department of Toxicology, Purdue University, West Lafayette, Indiana, 47907, USA.
J Integr Neurosci. 2020 Mar 30;19(1):137-177. doi: 10.31083/j.jin.2020.01.1153.
Decerebration permits neurophysiological experimentation absent the confounding effects of anesthesia. Use of the unanesthetized decerebrate preparation in vivo offers several advantages compared with recordings performed in reduced slice preparations, providing the capacity to perform extracellular and intracellular neuronal recordings in the presence of an intact brainstem network. The decerebration procedure typically generates variable degrees of blood loss, which often compromises the hemodynamic stability of the preparation. We describe our microsurgical techniques and discuss microsurgical pearls utilized in order to consistently generate normotensive supracollicularly decerebrate preparations of the rat, exhibiting an augmenting pattern of phrenic nerve discharge. In brief, we perform bilateral ligation of the internal carotid arteries, biparietal craniectomies, securing of the superior sagittal sinus to the overlying strip of bone, removal of the median strip of bone overlying the superior sagittal sinus, supracollicular decerebrative encephalotomy, removal of the cerebral hemispheres, and packing of the anterior and middle cranial fossae with thrombin soaked gelfoam sponges. Hypothermia and potent inhalational anesthesia ensure neuroprotection during postdecerebrative neurogenic shock. Advantages of our approach include a bloodless and fast operation with a nil percent rate of operative mortality. We allow animal arterial pressure to recover gradually in parallel with gentle weaning of anesthesia following decerebration, performed contemporaneously with the provision of the neuromuscular antagonist vecuronium. Anesthetic weaning and institution of vecuronium should be contemporaneous, coordinate, gentle, gradual, and guided by the spontaneous recovery of the arterial blood pressure. We describe our microsurgical techniques and perioperative management strategy designed to achieve decerebration and accordingly survey the literature on techniques used across several studies in achieving these goals.
去大脑术可在无麻醉干扰效应的情况下进行神经生理学实验。与在离体脑片制备中进行的记录相比,在体内使用未麻醉的去大脑动物标本具有若干优势,能够在完整脑干网络存在的情况下进行细胞外和细胞内神经元记录。去大脑术通常会导致不同程度的失血,这往往会损害标本的血流动力学稳定性。我们描述了我们的显微外科技术,并讨论了所采用的显微外科技巧,以便始终如一地制作出大鼠上丘以上去大脑的血压正常标本,该标本呈现膈神经放电增强模式。简而言之,我们进行双侧颈内动脉结扎、双侧顶骨颅骨切除术、将上矢状窦固定于上方的骨条、去除上矢状窦上方的正中骨条、上丘以上去大脑脑切开术、去除大脑半球,并用浸有凝血酶的明胶海绵填充前颅窝和中颅窝。低温和强效吸入麻醉可确保去大脑术后神经源性休克期间的神经保护。我们方法的优点包括手术无血且快速,手术死亡率为零。我们让动物动脉压在去大脑术后随着麻醉的逐渐撤离而逐渐恢复,同时给予神经肌肉拮抗剂维库溴铵。麻醉撤离和维库溴铵的使用应同步、协调、轻柔、逐渐进行,并以动脉血压的自发恢复为指导。我们描述了旨在实现去大脑术的显微外科技术和围手术期管理策略,并据此综述了多项研究中用于实现这些目标的技术文献。