Susarrey-Arce A, Sorzabal-Bellido I, Oknianska A, McBride F, Beckett A J, Gardeniers J G E, Raval R, Tiggelaar R M, Diaz Fernandez Y A
Open Innovation Hub for Antimicrobial Surfaces at the Surface Science Research Centre, University of Liverpool, Oxford Street, L69 3BX, Liverpool, UK.
J Mater Chem B. 2016 May 14;4(18):3104-3112. doi: 10.1039/c6tb00460a. Epub 2016 Mar 15.
The global threat of antimicrobial resistance is driving an urgent need for novel antimicrobial strategies. Functional surfaces are essential to prevent spreading of infection and reduce surface contamination. In this study we have fabricated and characterized multiscale-functional nanotopographies with three levels of functionalization: (1) nanostructure topography in the form of silicon nanowires, (2) covalent chemical modification with (3-aminopropyl)triethoxysilane, and (3) incorporation of chlorhexidine digluconate. Cell viability assays were carried out on two model microorganisms E. coli and S. aureus over these nanotopographic surfaces. Using SEM we have identified two growth modes producing distinctive multicellular structures, i.e. in plane growth for E. coli and out of plane growth for S. aureus. We have also shown that these chemically modified SiNWs arrays are effective in reducing the number of planktonic and surface-attached microorganisms.
抗菌耐药性的全球威胁促使人们迫切需要新的抗菌策略。功能性表面对于防止感染传播和减少表面污染至关重要。在本研究中,我们制备并表征了具有三个功能化水平的多尺度功能纳米拓扑结构:(1)硅纳米线形式的纳米结构拓扑;(2)用(3-氨丙基)三乙氧基硅烷进行共价化学修饰;(3)掺入葡萄糖酸洗必泰。在这些纳米拓扑表面上对两种模式微生物大肠杆菌和金黄色葡萄球菌进行了细胞活力测定。通过扫描电子显微镜(SEM),我们确定了两种产生独特多细胞结构的生长模式,即大肠杆菌的平面生长和金黄色葡萄球菌的平面外生长。我们还表明,这些化学修饰的硅纳米线阵列可有效减少浮游和表面附着微生物的数量。