Department of Materials, Imperial College London, London, UK.
J Mater Chem B. 2021 Jun 23;9(24):4906-4914. doi: 10.1039/d0tb02762f.
We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria-nanostructure interfacing experiments.
我们研究了细菌大肠杆菌 DH5α和硅纳米线图案表面之间的生物材料界面。我们使用金属辅助化学蚀刻优化了硅纳米线涂层表面的工程设计。通过聚焦离子束扫描电子显微镜以及细胞活力和转化实验,我们发现随着界面力的增加,细胞活力降低,这是由于细胞破裂增加的结果。然而,尽管存在这种激进的界面条件,仍有一部分细菌细胞保持活力。我们发现硅纳米线既不会导致完全丧失细胞活力,也不会导致部分细胞膜破裂和相应的 DNA 质粒转化。关键的是,我们发现选择检测方法很重要,因为基于还原的代谢试剂在硅纳米线衬底上会产生假阳性结果。我们讨论了这些结果对未来细菌-纳米结构界面实验的设计和评估的影响。