Suppr超能文献

由氢键和亲水-亲脂平衡控制的自组装超分子材料的重组

Reorganization of self-assembled supramolecular materials controlled by hydrogen bonding and hydrophilic-lipophilic balance.

作者信息

Yang Pei-Pei, Zhao Xiao-Xiao, Xu An-Ping, Wang Lei, Wang Hao

机构信息

CAS Center for Excellence in Nanoscience, Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, China.

出版信息

J Mater Chem B. 2016 Apr 21;4(15):2662-2668. doi: 10.1039/c6tb00097e. Epub 2016 Mar 31.

Abstract

Supramolecular assembly to form a large variety of nanostructures has received increasing attention for diverse applications, in particular biomedical applications involving drug delivery, bioimaging, therapy and regenerative medicine. Meanwhile, the modulation of morphology and structure of nanoassemblies is a still big challenge. Herein, we report a series of supramolecular structures (BP-KLVFFG-PEG, BKP) and elucidate that their morphological transformation process is modulated by H-bonding, π-π interactions and hydrophilic/lipophilic balance (HLB). Our studies reveal that the hydrophobic and π-π interactions initially drive the self-assembly of BKP into nanoparticles in J-type aggregates in water, and the H-bonding interactions further induce an in situ spontaneous morphology transformation into nanofibers. The conversion rate is related to the length of the hydrophilic chains. The nanofibers are maintained by β-sheet H-bonds with parallel structure. Our results provide insight into the relationship between molecular structures and morphological transformations of self-assembled nanomaterials, which will guide the design of complex self-assembled materials in biological conditions.

摘要

超分子组装形成各种各样的纳米结构已在多种应用中受到越来越多的关注,特别是在涉及药物递送、生物成像、治疗和再生医学的生物医学应用中。与此同时,纳米组装体形态和结构的调控仍然是一个巨大的挑战。在此,我们报道了一系列超分子结构(BP-KLVFFG-PEG,BKP),并阐明它们的形态转变过程受氢键、π-π相互作用和亲水/亲脂平衡(HLB)的调控。我们的研究表明,疏水作用和π-π相互作用最初驱动BKP在水中自组装成J型聚集体中的纳米颗粒,而氢键相互作用进一步诱导原位自发形态转变为纳米纤维。转化率与亲水链的长度有关。纳米纤维通过具有平行结构的β-折叠氢键得以维持。我们的结果为自组装纳米材料的分子结构与形态转变之间的关系提供了见解,这将指导生物条件下复杂自组装材料的设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验