State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P.R. China.
University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.
Environ Sci Technol. 2020 May 5;54(9):5489-5497. doi: 10.1021/acs.est.9b07042. Epub 2020 Apr 22.
Tris(2-chloroethyl) phosphate (TCEP), a typical chlorinated organophosphate ester (OPE), is an emerging contaminant of global concern because of its frequent occurrence, potential toxic effects, and persistence in the environment. In this study, we investigated the microbial TCEP biotransformation and the development of microbial communities in sediment microcosms with repeated TCEP amendments. The TCEP degradation fitted pseudo-zero-order kinetics, with reaction rates of 0.068 mg/(L h) after the first spike of 5 mg/L and 1.85 mg/(L h) after the second spike of 50 mg/L. TCEP was mainly degraded via phosphoester bond hydrolysis, evidenced by the production of bis(2-chloroethyl) phosphate (BCEP) and mono-chloroethyl phosphate (MCEP). Bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), phosphoric bis(2-chloroethyl) (2-oxoethyl) ester (TCEP-CHO), phosphoric acid bis(2-chloroethyl)(carboxymethyl) ester (TCEP-COOH), and 2-chloroethyl 2-hydroxyethyl hydrogen phosphate (BCEP-OH) were also identified as microbial TCEP transformation products, indicating that TCEP degradation may follow hydrolytic dechlorination and oxidation pathways. Microbial community compositions in TCEP-amended microcosms shifted away from control microcosms after the second TCEP spike. Burkholderiales and Rhizobiales were two prevalent bacterial guilds enriched in TCEP-amended microcosms and were linked to the higher abundances of alkaline and acid phosphatase genes and genes involved in the metabolism of 2-chloroethanol, a side product of TCEP hydrolysis, indicating their importance in degrading TCEP and its metabolites.
三(2-氯乙基)磷酸酯(TCEP)是一种典型的氯化有机磷酸酯(OPE),由于其频繁出现、潜在的毒性效应以及在环境中的持久性,已成为全球关注的新兴污染物。本研究中,我们调查了沉积物微宇宙中反复添加 TCEP 时 TCEP 的微生物转化和微生物群落的发展。TCEP 的降解符合准零级动力学,首次添加 5mg/L 时的反应速率为 0.068mg/(L·h),第二次添加 50mg/L 时的反应速率为 1.85mg/(L·h)。TCEP 主要通过磷酸酯键水解降解,这一点可以从生成双(2-氯乙基)磷酸酯(BCEP)和单氯乙基磷酸酯(MCEP)得到证明。双(2-氯乙基)2-羟乙基磷酸酯(TCEP-OH)、磷酸双(2-氯乙基)(2-氧代乙基)酯(TCEP-CHO)、磷酸双(2-氯乙基)(羧甲基)酯(TCEP-COOH)和 2-氯乙基 2-羟乙基磷酸氢酯(BCEP-OH)也被鉴定为微生物 TCEP 转化产物,表明 TCEP 降解可能遵循水解脱氯和氧化途径。第二次添加 TCEP 后,TCEP 处理的微宇宙中的微生物群落组成与对照微宇宙发生了偏离。伯克霍尔德氏菌目和根瘤菌目是两种在 TCEP 处理的微宇宙中富集的常见细菌类群,与碱性磷酸酶和酸性磷酸酶基因以及参与 TCEP 水解的副产物 2-氯乙醇代谢的基因的较高丰度相关,表明它们在降解 TCEP 及其代谢物方面的重要性。