Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
J Biol Chem. 2020 May 15;295(20):6936-6945. doi: 10.1074/jbc.RA119.012213. Epub 2020 Apr 7.
The cystine/glutamate transporter system x consists of the light-chain subunit xCT (SLC7A11) and the heavy-chain subunit CD98 (4F2hc or SLC3A2) and exchanges extracellular cystine for intracellular glutamate at the plasma membrane. The imported cystine is reduced to cysteine and used for synthesis of GSH, one of the most important antioxidants in cancer cells. Because cancer cells have increased levels of reactive oxygen species, xCT, responsible for cystine-glutamate exchange, is overexpressed in many cancers, including glioblastoma. However, under glucose-limited conditions, xCT overexpression induces reactive oxygen species accumulation and cell death. Here we report that cell survival under glucose deprivation depends on cell density. We found that high cell density (HD) down-regulates xCT levels and increases cell viability under glucose deprivation. We also found that growth of glioblastoma cells at HD inactivates mTOR and that treatment of cells grown at low density with the mTOR inhibitor Torin 1 down-regulates xCT and inhibits glucose deprivation-induced cell death. The lysosome inhibitor bafilomycin A1 suppressed xCT down-regulation in HD-cultured glioblastoma cells and in Torin 1-treated cells grown at low density. Additionally, bafilomycin A1 exposure or ectopic xCT expression restored glucose deprivation-induced cell death at HD. These results suggest that HD inactivates mTOR and promotes lysosomal degradation of xCT, leading to improved glioblastoma cell viability under glucose-limited conditions. Our findings provide evidence that control of xCT protein expression via lysosomal degradation is an important mechanism for metabolic adaptation in glioblastoma cells.
胱氨酸/谷氨酸转运蛋白系统 x 由轻链亚基 xCT(SLC7A11)和重链亚基 CD98(4F2hc 或 SLC3A2)组成,在质膜上交换细胞外胱氨酸和细胞内谷氨酸。导入的胱氨酸还原为半胱氨酸,并用于合成 GSH,GSH 是癌细胞中最重要的抗氧化剂之一。由于癌细胞中活性氧的水平增加,许多癌症(包括神经胶质瘤)中负责胱氨酸-谷氨酸交换的 xCT 过度表达。然而,在葡萄糖受限的条件下,xCT 的过度表达会导致活性氧的积累和细胞死亡。在这里,我们报告说,在葡萄糖剥夺下细胞的存活取决于细胞密度。我们发现,高细胞密度(HD)下调 xCT 水平并增加葡萄糖剥夺下的细胞活力。我们还发现,在 HD 下培养的神经胶质瘤细胞中,生长因子限制 mTOR 的活性,并且用 mTOR 抑制剂 Torin 1 处理在低密度下生长的细胞会下调 xCT 并抑制葡萄糖剥夺诱导的细胞死亡。溶酶体抑制剂巴弗洛霉素 A1 抑制了在 HD 培养的神经胶质瘤细胞中和在 Torin 1 处理的低密度细胞中 xCT 的下调。此外,巴弗洛霉素 A1 暴露或异位表达 xCT 恢复了在 HD 下葡萄糖剥夺诱导的细胞死亡。这些结果表明,HD 使 mTOR 失活并促进 xCT 的溶酶体降解,从而在葡萄糖有限的条件下改善神经胶质瘤细胞的活力。我们的发现提供了证据,表明通过溶酶体降解控制 xCT 蛋白表达是神经胶质瘤细胞代谢适应的重要机制。