Suppr超能文献

高细胞密度通过降解胱氨酸/谷氨酸转运体 xCT(SLC7A11)增加葡萄糖剥夺条件下胶质母细胞瘤细胞的活力。

High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11).

机构信息

Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

J Biol Chem. 2020 May 15;295(20):6936-6945. doi: 10.1074/jbc.RA119.012213. Epub 2020 Apr 7.

Abstract

The cystine/glutamate transporter system x consists of the light-chain subunit xCT (SLC7A11) and the heavy-chain subunit CD98 (4F2hc or SLC3A2) and exchanges extracellular cystine for intracellular glutamate at the plasma membrane. The imported cystine is reduced to cysteine and used for synthesis of GSH, one of the most important antioxidants in cancer cells. Because cancer cells have increased levels of reactive oxygen species, xCT, responsible for cystine-glutamate exchange, is overexpressed in many cancers, including glioblastoma. However, under glucose-limited conditions, xCT overexpression induces reactive oxygen species accumulation and cell death. Here we report that cell survival under glucose deprivation depends on cell density. We found that high cell density (HD) down-regulates xCT levels and increases cell viability under glucose deprivation. We also found that growth of glioblastoma cells at HD inactivates mTOR and that treatment of cells grown at low density with the mTOR inhibitor Torin 1 down-regulates xCT and inhibits glucose deprivation-induced cell death. The lysosome inhibitor bafilomycin A1 suppressed xCT down-regulation in HD-cultured glioblastoma cells and in Torin 1-treated cells grown at low density. Additionally, bafilomycin A1 exposure or ectopic xCT expression restored glucose deprivation-induced cell death at HD. These results suggest that HD inactivates mTOR and promotes lysosomal degradation of xCT, leading to improved glioblastoma cell viability under glucose-limited conditions. Our findings provide evidence that control of xCT protein expression via lysosomal degradation is an important mechanism for metabolic adaptation in glioblastoma cells.

摘要

胱氨酸/谷氨酸转运蛋白系统 x 由轻链亚基 xCT(SLC7A11)和重链亚基 CD98(4F2hc 或 SLC3A2)组成,在质膜上交换细胞外胱氨酸和细胞内谷氨酸。导入的胱氨酸还原为半胱氨酸,并用于合成 GSH,GSH 是癌细胞中最重要的抗氧化剂之一。由于癌细胞中活性氧的水平增加,许多癌症(包括神经胶质瘤)中负责胱氨酸-谷氨酸交换的 xCT 过度表达。然而,在葡萄糖受限的条件下,xCT 的过度表达会导致活性氧的积累和细胞死亡。在这里,我们报告说,在葡萄糖剥夺下细胞的存活取决于细胞密度。我们发现,高细胞密度(HD)下调 xCT 水平并增加葡萄糖剥夺下的细胞活力。我们还发现,在 HD 下培养的神经胶质瘤细胞中,生长因子限制 mTOR 的活性,并且用 mTOR 抑制剂 Torin 1 处理在低密度下生长的细胞会下调 xCT 并抑制葡萄糖剥夺诱导的细胞死亡。溶酶体抑制剂巴弗洛霉素 A1 抑制了在 HD 培养的神经胶质瘤细胞中和在 Torin 1 处理的低密度细胞中 xCT 的下调。此外,巴弗洛霉素 A1 暴露或异位表达 xCT 恢复了在 HD 下葡萄糖剥夺诱导的细胞死亡。这些结果表明,HD 使 mTOR 失活并促进 xCT 的溶酶体降解,从而在葡萄糖有限的条件下改善神经胶质瘤细胞的活力。我们的发现提供了证据,表明通过溶酶体降解控制 xCT 蛋白表达是神经胶质瘤细胞代谢适应的重要机制。

相似文献

2
Epidermal growth factor promotes glioblastoma cell death under glucose deprivation via upregulation of xCT (SLC7A11).
Cell Signal. 2021 Feb;78:109874. doi: 10.1016/j.cellsig.2020.109874. Epub 2020 Dec 5.
4
The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate.
J Biol Chem. 2017 Aug 25;292(34):14240-14249. doi: 10.1074/jbc.M117.798405. Epub 2017 Jun 19.
6
A synthetic lethal drug combination mimics glucose deprivation-induced cancer cell death in the presence of glucose.
J Biol Chem. 2020 Jan 31;295(5):1350-1365. doi: 10.1074/jbc.RA119.011471. Epub 2019 Dec 30.
7
Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation.
J Biol Chem. 2017 Dec 1;292(48):19721-19732. doi: 10.1074/jbc.M117.814392. Epub 2017 Oct 16.
8
The cystine/glutamate antiporter xCT is a key regulator of EphA2 S897 phosphorylation under glucose-limited conditions.
Cell Signal. 2019 Oct;62:109329. doi: 10.1016/j.cellsig.2019.05.014. Epub 2019 May 29.
9
xCT knockdown in human breast cancer cells delays onset of cancer-induced bone pain.
Mol Pain. 2019 Jan-Dec;15:1744806918822185. doi: 10.1177/1744806918822185.

引用本文的文献

2
Autophagy induced by mechanical stress sensitizes cells to ferroptosis by NCOA4-FTH1 axis.
Autophagy. 2025 Jun;21(6):1263-1282. doi: 10.1080/15548627.2025.2469129. Epub 2025 Mar 10.
3
Epilepsy therapy beyond neurons: unveiling astrocytes as cellular targets.
Neural Regen Res. 2025 Jan 13;21(1):23-38. doi: 10.4103/NRR.NRR-D-24-01035.
4
Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma.
BMC Med. 2024 Dec 5;22(1):578. doi: 10.1186/s12916-024-03775-4.
5
Cytoglobin augments ferroptosis through autophagic degradation of ferritin in colorectal cancer cells.
Mol Cell Biochem. 2025 May;480(5):2881-2892. doi: 10.1007/s11010-024-05148-0. Epub 2024 Nov 6.
7
The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade.
Front Cell Dev Biol. 2023 Nov 1;11:1275543. doi: 10.3389/fcell.2023.1275543. eCollection 2023.
9
Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11.
Cell Mol Neurobiol. 2023 Aug;43(6):2627-2642. doi: 10.1007/s10571-023-01343-7. Epub 2023 Mar 29.
10
Metabolomics analysis reveals cytotoxic effects of ouabain towards psoriatic keratinocytes via impairment of glutathione metabolism.
Mol Genet Genomics. 2023 May;298(3):567-577. doi: 10.1007/s00438-023-02001-9. Epub 2023 Mar 1.

本文引用的文献

1
The cystine/glutamate antiporter xCT is a key regulator of EphA2 S897 phosphorylation under glucose-limited conditions.
Cell Signal. 2019 Oct;62:109329. doi: 10.1016/j.cellsig.2019.05.014. Epub 2019 May 29.
2
Targeting Ferroptosis to Iron Out Cancer.
Cancer Cell. 2019 Jun 10;35(6):830-849. doi: 10.1016/j.ccell.2019.04.002. Epub 2019 May 16.
3
Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion.
Nat Rev Cancer. 2019 Jul;19(7):405-414. doi: 10.1038/s41568-019-0149-1.
4
Cell-cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro.
Arch Toxicol. 2019 May;93(5):1265-1279. doi: 10.1007/s00204-019-02413-w. Epub 2019 Feb 23.
5
Fluctuations in cell density alter protein markers of multiple cellular compartments, confounding experimental outcomes.
PLoS One. 2019 Feb 4;14(2):e0211727. doi: 10.1371/journal.pone.0211727. eCollection 2019.
6
The Deubiquitylase OTUB1 Mediates Ferroptosis via Stabilization of SLC7A11.
Cancer Res. 2019 Apr 15;79(8):1913-1924. doi: 10.1158/0008-5472.CAN-18-3037. Epub 2019 Feb 1.
7
The lysosome as a cellular centre for signalling, metabolism and quality control.
Nat Cell Biol. 2019 Feb;21(2):133-142. doi: 10.1038/s41556-018-0244-7. Epub 2019 Jan 2.
8
mTOR signalling and cellular metabolism are mutual determinants in cancer.
Nat Rev Cancer. 2018 Dec;18(12):744-757. doi: 10.1038/s41568-018-0074-8.
9
Lysosome: The metabolic signaling hub.
Traffic. 2019 Jan;20(1):27-38. doi: 10.1111/tra.12617. Epub 2018 Nov 14.
10
AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X Activity.
Curr Biol. 2018 Aug 6;28(15):2388-2399.e5. doi: 10.1016/j.cub.2018.05.094. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验