Suppr超能文献

结合光遗传学和灵敏的 FRET 成像来监测局部微管的操作。

Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations.

机构信息

Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands.

Developmental Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.

出版信息

Sci Rep. 2020 Apr 7;10(1):6034. doi: 10.1038/s41598-020-62874-3.

Abstract

Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.

摘要

光遗传学方法可用于切换细胞内的分子状态,它是生命科学中日益重要的工具。基于Förster 共振能量转移(FRET)的传感器可提供细胞生物化学变化的定量和敏感读数,例如来自光遗传学的变化。然而,大多数光诱导结构域响应的波长与激发流行的 CFP/YFP 基 FRET 对所需的波长相同,这使得这些技术彼此不兼容。为了克服这一限制,我们通过使用 sYFP2 供体和 mScarlet-I 受体,对现有的基于 CFP/YFP 的 OP18 FRET 传感器(COPY)进行了红移。它们具有良好的量子产率和亮度,这使得 FRET 对发生红移,同时具有优化的动态范围,通过刺激分子内相互作用的 R125I 点突变,可进一步增强该范围。新传感器被命名为 ROPY,它可可视化微管调节因子 stathmin/OP18 与游离微管二聚体之间的相互作用。我们表明,通过 ROPY 传感器的磷酸化,可以通过光激活 Rac1(PARac1)局部调节其微管隔离能力,而与 FRET 读数无关。ROPY 和 PARac1 一起为游离微管水平提供了时空控制。基于 ROPY/PARac1 的游离微管水平的光遗传学调控使我们能够证明,游离微管的耗竭可防止先驱微管的形成,而局部上调微管浓度可允许局部微管延伸以支持片状伪足。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9553/7138840/755efe490220/41598_2020_62874_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验