Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210. S. 33rd Street, Philadelphia, PA 19104.
Department of Mechanical and Aerospace Engineering, Center for Applied Biomechanics, University of Virginia, P.O. Box 400237, Charlottesville, VA 22904.
J Biomech Eng. 2020 Sep 1;142(9). doi: 10.1115/1.4046866.
With an increasing focus on long-term consequences of concussive brain injuries, there is a new emphasis on developing tools that can accurately predict the mechanical response of the brain to impact loading. Although finite element models (FEM) estimate the brain response under dynamic loading, these models are not capable of delivering rapid (∼seconds) estimates of the brain's mechanical response. In this study, we develop a multibody spring-mass-damper model that estimates the regional motion of the brain to rotational accelerations delivered either about one anatomic axis or across three orthogonal axes simultaneously. In total, we estimated the deformation across 120 locations within a 50th percentile human brain. We found the multibody model (MBM) correlated, but did not precisely predict, the computed finite element response (average relative error: 18.4 ± 13.1%). We used machine learning (ML) to combine the prediction from the MBM and the loading kinematics (peak rotational acceleration, peak rotational velocity) and significantly reduced the discrepancy between the MBM and FEM (average relative error: 9.8 ± 7.7%). Using an independent sports injury testing set, we found the hybrid ML model also correlated well with predictions from a FEM (average relative error: 16.4 ± 10.2%). Finally, we used this hybrid MBM-ML approach to predict strains appearing in different locations throughout the brain, with average relative error estimates ranging from 8.6% to 25.2% for complex, multi-axial acceleration loading. Together, these results show a rapid and reasonably accurate method for predicting the mechanical response of the brain for single and multiplanar inputs, and provide a new tool for quickly assessing the consequences of impact loading throughout the brain.
随着人们越来越关注脑震荡的长期后果,现在的重点是开发能够准确预测大脑对冲击加载的机械反应的工具。虽然有限元模型 (FEM) 可以估计动态加载下的大脑反应,但这些模型无法快速(∼秒)估计大脑的机械反应。在这项研究中,我们开发了一种多体弹簧-质量-阻尼器模型,该模型可以估计大脑在受到一个解剖轴或三个正交轴同时施加的旋转加速度时的区域运动。总共,我们估计了 50 百分位人体大脑内 120 个位置的变形。我们发现多体模型(MBM)与计算出的有限元响应相关,但并不完全吻合(平均相对误差:18.4±13.1%)。我们使用机器学习 (ML) 来结合 MBM 和加载运动学(峰值旋转加速度、峰值旋转速度)的预测,并显著降低了 MBM 和 FEM 之间的差异(平均相对误差:9.8±7.7%)。使用独立的运动损伤测试集,我们发现混合 ML 模型与 FEM 的预测也有很好的相关性(平均相对误差:16.4±10.2%)。最后,我们使用这种混合 MBM-ML 方法来预测大脑不同部位出现的应变,对于复杂的多轴加速度加载,平均相对误差估计值在 8.6%到 25.2%之间。总的来说,这些结果表明,对于单轴和多平面输入,这是一种快速且相当准确的预测大脑机械反应的方法,并为快速评估大脑冲击加载的后果提供了一种新工具。