Suppr超能文献

基于谐相位分析和有限元模型的加速度诱导脑变形的三维测量。

3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models.

出版信息

IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467. doi: 10.1109/TBME.2018.2874591. Epub 2018 Oct 8.

Abstract

OBJECTIVE

To obtain dense spatiotemporal measurements of brain deformation from two distinct but complementary head motion experiments: linear and rotational accelerations.

METHODS

This study introduces a strategy for integrating harmonic phase analysis of tagged magnetic resonance imaging (MRI) and finite-element models to extract mechanically representative deformation measurements. The method was calibrated using simulated as well as experimental data, demonstrated in a phantom including data with image artifacts, and used to measure brain deformation in human volunteers undergoing rotational and linear acceleration.

RESULTS

Evaluation methods yielded a displacement error of 1.1 mm compared to human observers and strain errors between [Formula: see text] for linear acceleration and [Formula: see text] for rotational acceleration. This study also demonstrates an approach that can reduce error by 86% in the presence of corrupted data. Analysis of results shows consistency with 2-D motion estimation, agreement with external sensors, and the expected physical behavior of the brain.

CONCLUSION

Mechanical regularization is useful for obtaining dense spatiotemporal measurements of in vivo brain deformation under different loading regimes.

SIGNIFICANCE

The measurements suggest that the brain's 3-D response to mild accelerations includes distinct patterns observable using practical MRI resolutions. This type of measurement can provide validation data for computer models for the study of traumatic brain injury.

摘要

目的

从两个不同但互补的头部运动实验(线性和旋转加速度)中获得大脑变形的密集时空测量结果。

方法

本研究引入了一种策略,将标记磁共振成像(MRI)的谐相分析与有限元模型相结合,以提取具有机械代表性的变形测量结果。该方法使用模拟和实验数据进行了校准,在包括图像伪影的数据的体模中进行了演示,并用于测量经受旋转和线性加速度的人类志愿者的大脑变形。

结果

评估方法与人类观察者相比,位移误差为 1.1 毫米,对于线性加速度为 [Formula: see text],对于旋转加速度为 [Formula: see text]。本研究还展示了一种在存在损坏数据的情况下可以将误差降低 86%的方法。结果分析表明与 2-D 运动估计一致,与外部传感器一致,以及大脑的预期物理行为一致。

结论

机械正则化对于在不同加载条件下获得活体大脑变形的密集时空测量是有用的。

意义

这些测量结果表明,大脑对轻度加速度的 3-D 反应包括使用实际 MRI 分辨率可以观察到的不同模式。这种类型的测量可以为创伤性脑损伤的计算机模型研究提供验证数据。

相似文献

10
Deformation of the human brain induced by mild angular head acceleration.轻度角向头部加速度引起的人脑变形。
J Biomech. 2008;41(2):307-15. doi: 10.1016/j.jbiomech.2007.09.016. Epub 2007 Oct 24.

引用本文的文献

6
Group characterization of impact-induced, human brain kinematics.撞击诱导的人类大脑运动学的群组特征。
J R Soc Interface. 2021 Jun;18(179):20210251. doi: 10.1098/rsif.2021.0251. Epub 2021 Jun 23.
9
Natural oscillatory modes of 3D deformation of the human brain in vivo.人体大脑的三维变形的自然振荡模式。
J Biomech. 2021 Apr 15;119:110259. doi: 10.1016/j.jbiomech.2021.110259. Epub 2021 Feb 10.

本文引用的文献

2
Test Suite for Image-Based Motion Estimation of the Brain and Tongue.基于图像的大脑和舌头运动估计测试套件。
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10137. doi: 10.1117/12.2254626. Epub 2017 Mar 13.
5
Repetitive Head Impacts and Chronic Traumatic Encephalopathy.重复性头部撞击与慢性创伤性脑病
Neurosurg Clin N Am. 2016 Oct;27(4):529-35. doi: 10.1016/j.nec.2016.05.009.
8
Resonance of human brain under head acceleration.头部加速状态下人类大脑的共振
J R Soc Interface. 2015 Jul 6;12(108):20150331. doi: 10.1098/rsif.2015.0331.
9
Mechanics of the brain: perspectives, challenges, and opportunities.大脑的力学原理:观点、挑战与机遇。
Biomech Model Mechanobiol. 2015 Oct;14(5):931-65. doi: 10.1007/s10237-015-0662-4. Epub 2015 Feb 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验