Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan.
Biosci Rep. 2020 Apr 30;40(4). doi: 10.1042/BSR20193767.
Hydroxyoctadecadienoic acids (HODEs) are produced by oxidation and reduction of linoleates. There are several regio- and stereo-isomers of HODE, and their concentrations in vivo are higher than those of other lipids. Although conformational isomers may have different biological activities, comparative analysis of intracellular function of HODE isomers has not yet been performed. We evaluated the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ), a therapeutic target for diabetes, and analyzed PPARγ agonist activity of HODE isomers. The lowest scores for docking poses of 12 types of HODE isomers (9-, 10-, 12-, and 13-HODEs) were almost similar in docking simulation of HODEs into PPARγ ligand-binding domain (LBD). Direct binding of HODE isomers to PPARγ LBD was determined by water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiments. In contrast, there were differences in PPARγ agonist activities among 9- and 13-HODE stereo-isomers and 12- and 13-HODE enantio-isomers in a dual-luciferase reporter assay. Interestingly, the activity of 9-HODEs was less than that of other regio-isomers, and 9-(E,E)-HODE tended to decrease PPARγ-target gene expression during the maturation of 3T3-L1 cells. In addition, 10- and 12-(Z,E)-HODEs, which we previously proposed as biomarkers for early-stage diabetes, exerted PPARγ agonist activity. These results indicate that all HODE isomers have PPARγ-binding affinity; however, they have different PPARγ agonist activity. Our findings may help to understand the biological function of lipid peroxidation products.
羟基十八碳二烯酸(HODEs)是亚油酸氧化还原的产物。HODE 有几种区域和立体异构体,其体内浓度高于其他脂质。尽管构象异构体可能具有不同的生物学活性,但尚未对 HODE 异构体的细胞内功能进行比较分析。我们评估了过氧化物酶体增殖物激活受体γ(PPARγ)的转录活性,PPARγ 是糖尿病的治疗靶点,并分析了 HODE 异构体的 PPARγ 激动剂活性。在 HODE 进入 PPARγ 配体结合域(LBD)的对接模拟中,12 种 HODE 异构体(9-、10-、12-和 13-HODEs)的对接构象的最低得分几乎相似。通过梯度光谱(WaterLOGSY)NMR 实验观察到的水配体确定了 HODE 异构体与 PPARγ LBD 的直接结合。在双荧光素酶报告基因测定中,9-和 13-HODE 立体异构体以及 12-和 13-HODE 对映异构体之间存在 PPARγ 激动剂活性的差异。有趣的是,9-HODEs 的活性小于其他区域异构体,并且在 3T3-L1 细胞的成熟过程中,9-(E,E)-HODE 倾向于降低 PPARγ 靶基因的表达。此外,我们之前提出的作为早期糖尿病生物标志物的 10-和 12-(Z,E)-HODE 具有 PPARγ 激动剂活性。这些结果表明,所有 HODE 异构体都具有 PPARγ 结合亲和力;然而,它们具有不同的 PPARγ 激动剂活性。我们的发现可能有助于理解脂质过氧化产物的生物学功能。