Li Yuanzhen, Linghu Yaoyao, Wu Chao
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):20096-20102. doi: 10.1021/acsami.0c02192. Epub 2020 Apr 17.
Using first-principles simulations, we surveyed the interactions between porous MoS monolayers in the 2H phase and 15 small molecules (H, O, HO, HS, CO, CO, SO, N, NO, NO, NH, HF, HCl, CH, and CHOH). Four types of molecules including H, O, HS, and NO directly dissociate and saturate the corners of the most common S-rimmed triangular pores, while other molecules only molecularly adsorb. The trisublayered structure of a MoS monolayer allows a new in-pore stable adsorption configuration in addition to the most studied above-pore adsorption configuration. Furthermore, the gas penetration pathways through the MoS membranes are no longer the conventional single-peak curve with one transition state like in the case of porous graphenes but are the "M"-shaped curve featuring two transition states connected by a stable in-pore adsorption state. The irreversible pore passivation via dissociative adsorption and reversible pore decoration by molecular adsorption will lead to very different separation performances of the MoS membranes, largely by changing the effective pore size. For example, the S-rimmed pores in the pore-3Mo2S membrane allow free pass of CH and CO molecules. If passivated by H atoms, the membrane can be used to separate gas mixtures like H/CH and H/CO with selectivities of 10:1 and 10:1, respectively. The permeance value of H is estimated to be about 0.15 mol m s Pa at room temperature and 0.1 bar pressure drop across the membrane. In contrast, the medium strong adsorption of a SO molecule in the center of the pore will completely block the passage of CO and CH, whose removal only needs heating. Our work reveals the complex behaviors of porous transition metal dichalcogenides (TMDs) toward guest molecules.
通过第一性原理模拟,我们研究了2H相多孔MoS单层与15种小分子(H、O、HO、HS、CO、CO、SO、N、NO、NO、NH、HF、HCl、CH和CHOH)之间的相互作用。包括H、O、HS和NO在内的四种分子直接解离并使最常见的硫边缘三角形孔的角部饱和,而其他分子仅发生分子吸附。MoS单层的三层结构除了最常研究的孔上吸附构型外,还允许一种新的孔内稳定吸附构型。此外,通过MoS膜的气体渗透途径不再像多孔石墨烯那样是具有一个过渡态的传统单峰曲线,而是具有由孔内稳定吸附态连接的两个过渡态的“M”形曲线。通过解离吸附导致的不可逆孔钝化和分子吸附导致的可逆孔修饰将导致MoS膜非常不同的分离性能,主要是通过改变有效孔径。例如,pore-3Mo2S膜中的硫边缘孔允许CH和CO分子自由通过。如果被H原子钝化,该膜可用于分离H/CH和H/CO等气体混合物,选择性分别为10:1和10:1。在室温下且膜两侧压力降为0.1 bar时,H的渗透值估计约为0.15 mol m s Pa。相比之下,孔中心SO分子的中等强度吸附将完全阻止CO和CH的通过,去除它们只需加热。我们的工作揭示了多孔过渡金属二硫属化物(TMDs)对客体分子的复杂行为。