Institute of Geography, Friedrich-Alexander University Erlangen-Nuremberg, Wetterkreuz 15, Erlangen 91058, Germany.
Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
Tree Physiol. 2020 Jun 30;40(7):904-916. doi: 10.1093/treephys/tpaa043.
Due to the increase in atmospheric CO2 concentrations, the ratio of carbon fixed by assimilation to water lost by transpiration through stomatal conductance (intrinsic water-use efficiency, iWUE) shows a long-term increasing trend globally. However, the drivers of short-term (inter-annual) variability in iWUE of tropical trees are poorly understood. We studied the inter-annual variability in iWUE of three South Asian tropical moist forest tree species (Chukrasia tabularis A.Juss., Toona ciliata M. Roem. and Lagerstroemia speciosa L.) derived from tree-ring stable carbon isotope ratio (δ13C) in response to variations of environmental conditions. We found a significantly decreasing trend in carbon discrimination (Δ13C) and an increasing trend in iWUE in all the three species, with a species-specific long-term trend in intercellular CO2 concentration (Ci). Growing season temperatures were the main driver of inter-annual variability of iWUE in C. tabularis and L. speciosa, whereas previous year temperatures determined the iWUE variability in T. ciliata. Vapor pressure deficit was linked with iWUE only in C. tabularis. Differences in shade tolerance, tree stature and canopy position might have caused this species-specific variation in iWUE response to climate. Linear mixed effect modeling successfully simulated iWUE variability, explaining 41-51% of the total variance varying with species. Commonality analysis revealed that temperatures had a dominant influence on the inter-annual iWUE variability (64-77%) over precipitation (7-22%) and atmospheric CO2 concentration (3-6%). However, the long-term variations in iWUE were explicitly determined by the atmospheric CO2 increase (83-94%). Our results suggest that the elevated CO2 and concomitant global warming might have detrimental effects on gas exchange and other physiological processes in South Asian tropical moist forest trees.
由于大气 CO2 浓度的增加,通过气孔导度固定的碳与蒸腾失水的比例(内在水分利用效率,iWUE)在全球范围内呈现长期增加的趋势。然而,人们对热带树木 iWUE 的短期(年际)变化的驱动因素了解甚少。我们研究了南亚三种热带湿润森林树种(Chukrasia tabularis A.Juss.、Toona ciliata M. Roem. 和 Lagerstroemia speciosa L.)的 iWUE 的年际变化,这些树种的 iWUE 是由树木年轮稳定的碳同位素比值(δ13C)响应环境条件的变化而得出的。我们发现,在所有三种树种中,碳分馏(Δ13C)呈显著下降趋势,iWUE 呈上升趋势,胞间 CO2 浓度(Ci)呈长期特定趋势。生长季节温度是 C. tabularis 和 L. speciosa 中 iWUE 年际变化的主要驱动因素,而前一年温度决定了 T. ciliata 中 iWUE 的变化。水汽压亏缺仅与 C. tabularis 的 iWUE 有关。对遮荫的耐受性、树高和树冠位置的差异可能导致了这种特定于物种的 iWUE 对气候的反应变化。线性混合效应模型成功地模拟了 iWUE 的变化,解释了 41-51%的总方差,因物种而异。共性分析表明,温度对 iWUE 的年际变化(64-77%)比降水(7-22%)和大气 CO2 浓度(3-6%)的影响更为显著。然而,iWUE 的长期变化明确取决于大气 CO2 的增加(83-94%)。我们的研究结果表明,大气 CO2 升高和随之而来的全球变暖可能对南亚热带湿润森林树木的气体交换和其他生理过程产生不利影响。