Suppr超能文献

头颈部鳞状细胞癌中 GBPs 的表达与预后的综合分析。

Comprehensive Analysis of the Expression and Prognosis for GBPs in Head and neck squamous cell carcinoma.

机构信息

Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

Sci Rep. 2020 Apr 8;10(1):6085. doi: 10.1038/s41598-020-63246-7.

Abstract

Guanylate binding proteins (GBPs) belongs to the interferons (IFNs) induced guanylate-binding protein family (Guanosine triphosphatases, GTPases) consisting of seven homologous members, termed GBP1 to GBP7. We used multidimensional survey ways to explore GBPs expression, regulation, mutations, immune infiltration and functional networks in head and neck squamous cell carcinoma (HNSCC) patient data based on various open databases. The study provides staggered evidence for the significance of GBPs in HNSCC and its potential role as a novel biomarker. Our results showed that over expressions of 7 GBPs members and multivariate analysis suggested that N-stage, high expressions of GBP1 and low expression of GBP6/7 were linked to shorter OS in HNSCC patients. In addition, B cells of immune infiltrates stimulant the prognosis and might have a medical prognostic significance linked to GBPs in HNSCC. We assume that GBPs play a synergistic role in the viral related HNSCC. Our results show that data mining efficiently reveals information about GBPs expression in HNSCC and more importance lays a foundation for further research on the role of GBPs in cancers.

摘要

鸟苷酸结合蛋白(GBP)属于干扰素(IFNs)诱导的鸟苷酸结合蛋白家族(Guanosine 三磷酸酶,GTPases),由七个同源成员组成,分别命名为 GBP1 到 GBP7。我们使用多维调查方法,基于各种开放数据库,探索了头颈鳞状细胞癌(HNSCC)患者数据中 GBPs 的表达、调控、突变、免疫浸润和功能网络。该研究为 GBPs 在 HNSCC 中的重要性及其作为新型生物标志物的潜在作用提供了确凿的证据。我们的结果表明,7 个 GBPs 成员的高表达和多变量分析表明,N 期、GBP1 的高表达和 GBP6/7 的低表达与 HNSCC 患者的 OS 较短有关。此外,免疫浸润的 B 细胞刺激了预后,并可能与 HNSCC 中的 GBPs 具有医学预后意义有关。我们假设 GBPs 在病毒相关的 HNSCC 中发挥协同作用。我们的研究结果表明,数据挖掘可以有效地揭示 HNSCC 中 GBPs 表达的信息,并为进一步研究 GBPs 在癌症中的作用奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce6f/7142114/35f2ffe7338c/41598_2020_63246_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验