Suppr超能文献

剪切流诱导纳米片取向的层状纳米复合材料。

Layered nanocomposites by shear-flow-induced alignment of nanosheets.

机构信息

Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

出版信息

Nature. 2020 Apr;580(7802):210-215. doi: 10.1038/s41586-020-2161-8. Epub 2020 Apr 8.

Abstract

Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix. Inspired by these biological structures, several assembly strategies-including layer-by-layer, casting, vacuum filtration and use of magnetic fields-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.

摘要

生物材料,如骨骼、牙齿和贝类贝壳,以其优异的强度、模量和韧性而闻名。这些特性归因于无机增强纳米填料的精细层状微观结构,特别是二维纳米片或纳米板,存在于韧性有机基质中。受这些生物结构的启发,已经开发出了几种组装策略,包括层层组装、浇铸、真空过滤和利用磁场,以制备层状纳米复合材料。然而,如何以通用、可行和可扩展的方式生产超强度的层状纳米复合材料仍然是一个悬而未决的问题。在这里,我们提出了一种在不混溶的水凝胶/油界面使用剪切流诱导二维纳米片排列来制备具有高度有序层状结构的纳米复合材料的策略。例如,基于氧化石墨烯和粘土纳米片的纳米复合材料的拉伸强度高达 1215±80 兆帕,杨氏模量为 198.8±6.5 吉帕,分别比天然珍珠母(珍珠层)高 9.0 倍和 2.8 倍。当使用粘土纳米片时,所得纳米复合材料的韧性可达 36.7±3.0 兆焦耳/立方米,比天然珍珠母高 20.4 倍;同时,拉伸强度为 1195±60 兆帕。定量分析表明,排列良好的纳米片形成了一个临界相间层,这导致了观察到的力学性能。我们认为,我们的策略可以很容易地扩展到排列各种二维纳米填料,并可应用于广泛的结构复合材料,从而开发出高性能复合材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验