Zhou Tianxu, Zhao Chuangqi, Liu Yunhao, Huang Jin, Zhou Hangsheng, Nie Zhidong, Fan Meng, Zhao Tianyi, Cheng Qunfeng, Liu Mingjie
The Experimental High School Attached to Beijing Normal University, Beijing 100032, China.
ACS Nano. 2022 Aug 23;16(8):12013-12023. doi: 10.1021/acsnano.2c02062. Epub 2022 Aug 2.
To shield increasingly severe radiation pollution, ultrathin MXene-based electromagnetic interference (EMI) shielding materials with excellent mechanical properties are urgently demanded in wearable electrical devices or aerospace fields. However, it is still a challenge to fabricate ultrastrong and stiff MXene-based nanocomposites with excellent EMI shielding capacity in a universal and scalable manner. Here, inspired by the natural nacre structure, we propose an efficient superspreading strategy to construct a highly oriented layered "brick-and-mortar" structure using shear-flow-induced alignment of MXene nanosheets at an immiscible hydrogel/oil interface. A continuous and large-area MXene nanocomposite film has been fabricated through a homemade industrial-scale continuous fabrication setup. The prepared MXene nanocomposite films exhibit a tensile strength of 647.6 ± 56 MPa and a Young's modulus of 59.8 ± 6.1 GPa, respectively. These outstanding mechanical properties are attributed to the continuous interphase layer that formed between the well-aligned MXene nanosheets. Moreover, the obtained MXene nanocomposites also show great EMI shielding effectiveness (51.6 dB). We consider that our MXene-based nanocomposite films may be potentially applied as electrical or aerospace devices with superior mechanical properties and high EMI shielding capacity.
为了抵御日益严重的辐射污染,可穿戴电子设备或航空航天领域迫切需要具有优异机械性能的超薄MXene基电磁干扰(EMI)屏蔽材料。然而,以通用且可扩展的方式制备具有优异EMI屏蔽能力的超强且坚硬的MXene基纳米复合材料仍然是一项挑战。在此,受天然珍珠层结构的启发,我们提出了一种高效的超铺展策略,通过在不混溶的水凝胶/油界面处利用剪切流诱导MXene纳米片取向,构建高度取向的层状“砖-灰泥”结构。通过自制的工业规模连续制造装置制备了连续且大面积的MXene纳米复合薄膜。所制备的MXene纳米复合薄膜的拉伸强度分别为647.6±56 MPa,杨氏模量为59.8±6.1 GPa。这些优异的机械性能归因于在排列良好的MXene纳米片之间形成的连续界面层。此外,所获得的MXene纳米复合材料还表现出出色的EMI屏蔽效能(51.6 dB)。我们认为,我们的MXene基纳米复合薄膜可能潜在地应用于具有优异机械性能和高EMI屏蔽能力的电气或航空航天设备。