Muljadi Bagus Putra
Department of Earth Science and Engineering, Imperial College, London, SW7 2BP UK.
Transp Porous Media. 2017;116(1):1-18. doi: 10.1007/s11242-016-0762-3. Epub 2016 Sep 6.
Accurate prediction of the macroscopic flow parameters needed to describe flow in porous media relies on a good knowledge of flow field distribution at a much smaller scale-in the pore spaces. The extent of the inertial effect in the pore spaces cannot be underestimated yet is often ignored in large-scale simulations of fluid flow. We present a multiscale method for solving Oseen's approximation of incompressible flow in the pore spaces amid non-periodic grain patterns. The method is based on the multiscale finite element method [MsFEM Hou and Wu in J Comput Phys 134:169-189, 1997)] and is built in the vein of Crouzeix and Raviart elements (Crouzeix and Raviart in Math Model Numer Anal 7:33-75, 1973). Simulations of inertial flow in highly non-periodic settings are conducted and presented. Convergence studies in terms of numerical errors relative to the reference solution are given to demonstrate the accuracy of our method. The weakly enforced continuity across coarse element edges is shown to maintain accurate solutions in the vicinity of the grains without the need for any oversampling methods. The penalisation method is employed to allow a complicated grain pattern to be modelled using a simple Cartesian mesh. This work is a stepping stone towards solving the more complicated Navier-Stokes equations with a nonlinear inertial term.
准确预测描述多孔介质中流动所需的宏观流动参数,依赖于对更小尺度(孔隙空间)上流场分布的深入了解。孔隙空间中惯性效应的程度不可低估,但在大规模流体流动模拟中却常常被忽视。我们提出了一种多尺度方法,用于求解非周期性颗粒图案孔隙空间中不可压缩流动的奥森近似。该方法基于多尺度有限元方法[MsFEM,Hou和Wu,《计算物理杂志》134:169 - 189,1997年],并以克鲁泽克斯和拉维亚尔特单元(Crouzeix和Raviart,《数学模型与数值分析》7:33 - 75,1973年)的思路构建。进行并展示了高度非周期性环境下惯性流动的模拟。给出了相对于参考解的数值误差收敛性研究,以证明我们方法的准确性。结果表明,粗单元边缘处弱强制连续性在颗粒附近能保持精确解,而无需任何过采样方法。采用惩罚方法,允许使用简单的笛卡尔网格对复杂的颗粒图案进行建模。这项工作是迈向求解带有非线性惯性项的更复杂纳维 - 斯托克斯方程的垫脚石。