Suppr超能文献

机器学习方法在精准医学研究中旨在减少健康差异:结构化教程。

Machine Learning Methods for Precision Medicine Research Designed to Reduce Health Disparities: A Structured Tutorial.

机构信息

Research and Analytics, Collective Health, San Francisco, CA.

Center for Primary Care, Harvard Medical School, Boston, MA.

出版信息

Ethn Dis. 2020 Apr 2;30(Suppl 1):217-228. doi: 10.18865/ed.30.S1.217. eCollection 2020.

Abstract

Precision medicine research designed to reduce health disparities often involves studying multi-level datasets to understand how diseases manifest disproportionately in one group over another, and how scarce health care resources can be directed precisely to those most at risk for disease. In this article, we provide a structured tutorial for medical and public health researchers on the application of machine learning methods to conduct precision medicine research designed to reduce health disparities. We review key terms and concepts for understanding machine learning papers, including supervised and unsupervised learning, regularization, cross-validation, bagging, and boosting. Metrics are reviewed for evaluating machine learners and major families of learning approaches, including tree-based learning, deep learning, and ensemble learning. We highlight the advantages and disadvantages of different learning approaches, describe strategies for interpreting "black box" models, and demonstrate the application of common methods in an example dataset with open-source statistical code in R.

摘要

精准医学研究旨在减少健康差异,通常涉及研究多层次数据集,以了解疾病如何在一个群体中不成比例地表现出来,以及如何将稀缺的医疗资源精确地指向那些最有患病风险的人。在本文中,我们为医学和公共卫生研究人员提供了一个关于应用机器学习方法进行旨在减少健康差异的精准医学研究的结构化教程。我们回顾了理解机器学习论文的关键术语和概念,包括有监督和无监督学习、正则化、交叉验证、装袋和提升。我们还回顾了用于评估机器学习器和主要学习方法家族的指标,包括基于树的学习、深度学习和集成学习。我们强调了不同学习方法的优缺点,描述了解释“黑盒”模型的策略,并在 R 中的示例数据集和开源统计代码中演示了常见方法的应用。

相似文献

2
Machine Learning for Health Services Researchers.机器学习在卫生服务研究中的应用。
Value Health. 2019 Jul;22(7):808-815. doi: 10.1016/j.jval.2019.02.012.
3
eDoctor: machine learning and the future of medicine.医生:机器学习与医学的未来。
J Intern Med. 2018 Dec;284(6):603-619. doi: 10.1111/joim.12822. Epub 2018 Sep 3.
5
Machine learning for precision medicine.机器学习与精准医学
Genome. 2021 Apr;64(4):416-425. doi: 10.1139/gen-2020-0131. Epub 2020 Oct 22.

引用本文的文献

5
Accelerating health disparities research with artificial intelligence.利用人工智能加速健康差异研究。
Front Digit Health. 2024 Jan 23;6:1330160. doi: 10.3389/fdgth.2024.1330160. eCollection 2024.

本文引用的文献

1
Machine Learning for Health Services Researchers.机器学习在卫生服务研究中的应用。
Value Health. 2019 Jul;22(7):808-815. doi: 10.1016/j.jval.2019.02.012.
7
Predicting Emergency Department Visits.预测急诊科就诊情况。
AMIA Jt Summits Transl Sci Proc. 2016 Jul 20;2016:438-45. eCollection 2016.
8
Recursive partitioning for heterogeneous causal effects.异质因果效应的递归划分
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7353-60. doi: 10.1073/pnas.1510489113.
10
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验