Institute of Ophthalmology, University College London, London, UK.
Moorfields Eye Hospital NHS Foundation Trust, London, London, UK.
Transl Vis Sci Technol. 2022 Sep 1;11(9):34. doi: 10.1167/tvst.11.9.34.
Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype-phenotype correlations.
International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function.
Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants.
This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease.
Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies.
ABCA4 中的双等位致病性变异是单基因视网膜疾病最常见的原因。全视野视网膜电图(ERG)量化视网膜功能障碍的严重程度。我们探索了机器学习在 ERG 解释和基因型-表型相关性中的应用。
通过人类专家将 597 例 ABCA4 视网膜病变的国际标准 ERG 分为三种功能表型:仅黄斑功能障碍(第 1 组),或伴有附加的全锥形功能障碍(第 2 组),或同时伴有锥形和杆形功能障碍(第 3 组)。开发了用于自动选择和测量 ERG 成分以及分类 ERG 表型的算法。弹性网络回归用于根据对视网膜功能的影响量化特定 ABCA4 变体的严重程度。
在队列中,分别有 57.6%、7.4%和 35.0%的患者归入第 1、2 和 3 组。与人类专家相比,自动分类的总体准确率为 91.8%(SE,0.169),第 1、2 和 3 组的准确率分别为 96.7%、39.3%和 93.8%。当第 2 组和第 3 组合并时,平均留组准确率为 93.6%(SE,0.142)。回归模型得出了 47 种最常见的 ABCA4 变体的表型严重程度评分。
本研究根据电生理特征明确的 ABCA4 视网膜病变患者的独特大中心队列中的视网膜功能,对表型组的患病率进行了量化,并显示了机器学习的适用性。基于 ABCA4 变异严重程度的新型回归分析可识别易患严重疾病的个体。
仅供参考,可能存在细微偏差