Suppr超能文献

极限 MRI:连续非门控采集的大规模容积动态成像。

Extreme MRI: Large-scale volumetric dynamic imaging from continuous non-gated acquisitions.

机构信息

Electrical Engineering, Stanford University, Stanford, CA, USA.

Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

出版信息

Magn Reson Med. 2020 Oct;84(4):1763-1780. doi: 10.1002/mrm.28235. Epub 2020 Apr 9.

Abstract

PURPOSE

To develop a framework to reconstruct large-scale volumetric dynamic MRI from rapid continuous and non-gated acquisitions, with applications to pulmonary and dynamic contrast-enhanced (DCE) imaging.

THEORY AND METHODS

The problem considered here requires recovering 100 gigabytes of dynamic volumetric image data from a few gigabytes of k-space data, acquired continuously over several minutes. This reconstruction is vastly under-determined, heavily stressing computing resources as well as memory management and storage. To overcome these challenges, we leverage intrinsic three-dimensional (3D) trajectories, such as 3D radial and 3D cones, with ordering that incoherently cover time and k-space over the entire acquisition. We then propose two innovations: (a) A compressed representation using multiscale low-rank matrix factorization that constrains the reconstruction problem, and reduces its memory footprint. (b) Stochastic optimization to reduce computation, improve memory locality, and minimize communications between threads and processors. We demonstrate the feasibility of the proposed method on DCE imaging acquired with a golden-angle ordered 3D cones trajectory and pulmonary imaging acquired with a bit-reversed ordered 3D radial trajectory. We compare it with "soft-gated" dynamic reconstruction for DCE and respiratory-resolved reconstruction for pulmonary imaging.

RESULTS

The proposed technique shows transient dynamics that are not seen in gating-based methods. When applied to datasets with irregular, or non-repetitive motions, the proposed method displays sharper image features.

CONCLUSIONS

We demonstrated a method that can reconstruct massive 3D dynamic image series in the extreme undersampling and extreme computation setting.

摘要

目的

开发一种从连续快速和非门控采集重建大规模容积动态 MRI 的框架,应用于肺部和动态对比增强(DCE)成像。

理论和方法

这里考虑的问题需要从几 GB 的 K 空间数据中恢复 100GB 的动态容积图像数据,这些数据是在几分钟内连续采集的。这种重建是严重欠定的,极大地强调了计算资源以及内存管理和存储。为了克服这些挑战,我们利用内在的三维(3D)轨迹,如 3D 径向和 3D 锥形,其顺序在整个采集过程中不一致地覆盖时间和 K 空间。然后,我们提出了两项创新:(a)使用多尺度低秩矩阵分解的压缩表示,约束重建问题,并减少其内存占用。(b)随机优化以减少计算量、提高内存局部性,并最小化线程和处理器之间的通信。我们在使用黄金角有序 3D 锥形轨迹采集的 DCE 成像和使用位反转有序 3D 径向轨迹采集的肺部成像上验证了所提出方法的可行性。我们将其与 DCE 的“软门控”动态重建和肺部成像的呼吸分辨重建进行了比较。

结果

所提出的技术显示出基于门控方法看不到的瞬态动力学。当应用于具有不规则或非重复运动的数据集时,所提出的方法显示出更清晰的图像特征。

结论

我们证明了一种可以在极端欠采样和极端计算环境下重建大规模 3D 动态图像序列的方法。

相似文献

10
GOCART: GOlden-angle CArtesian randomized time-resolved 3D MRI.GOCART:黄金角笛卡尔随机时间分辨三维磁共振成像
Magn Reson Imaging. 2016 Sep;34(7):940-50. doi: 10.1016/j.mri.2015.12.030. Epub 2015 Dec 19.

引用本文的文献

本文引用的文献

7
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition.超越低秩+稀疏:多尺度低秩矩阵分解
IEEE J Sel Top Signal Process. 2016 Jun;10(4):672-687. doi: 10.1109/JSTSP.2016.2545518. Epub 2016 Mar 23.
10
High-frame-rate full-vocal-tract 3D dynamic speech imaging.高帧率全声道三维动态语音成像
Magn Reson Med. 2017 Apr;77(4):1619-1629. doi: 10.1002/mrm.26248. Epub 2016 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验