Suppr超能文献

WW 结构域折叠、错误折叠和非折叠动力学的新见解。

New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain.

作者信息

Kachlishvili Khatuna, Korneev Anatolii, Maisuradze Luka, Liu Jiaojiao, Scheraga Harold A, Molochkov Alexander, Senet Patrick, Niemi Antti J, Maisuradze Gia G

机构信息

Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca 14853-1301, New York, United States.

Laboratory of Physics of Living Matter, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950, Russia.

出版信息

J Phys Chem B. 2020 May 14;124(19):3855-3872. doi: 10.1021/acs.jpcb.0c00628. Epub 2020 May 1.

Abstract

Intermediate states in protein folding are associated with formation of amyloid fibrils, which are responsible for a number of neurodegenerative diseases. Therefore, prevention of the aggregation of folding intermediates is one of the most important problems to overcome. Recently, we studied the origins and prevention of formation of intermediate states with the example of the Formin binding protein 28 (FBP28) WW domain. We demonstrated that the replacement of Leu26 by Asp26 or Trp26 (in ∼15% of the folding trajectories) can alter the folding scenario from three-state folding, a major folding scenario for the FBP28 WW domain (WT) and its mutants, toward two-state or downhill folding at temperatures below the melting point. Here, for a better understanding of the physics of the formation/elimination of intermediates, (i) the dynamics and energetics of formation of β-strands in folding, misfolding, and nonfolding trajectories of these mutants (L26D and L26W) is investigated; (ii) the experimental structures of WT, L26D, and L26W are analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger equation. We show that the formation of each β-strand in folding trajectories is accompanied by the emergence of kinks in internal coordinate space as well as a decrease in free energy. In particular, the decrease in downhill folding trajectory is ∼7 kcal/mol, while it varies between 31 and 48 kcal/mol for the three-state folding trajectory. The kink analyses of the experimental structures give new insights into formation of intermediates, which may become a useful tool for preventing aggregation.

摘要

蛋白质折叠过程中的中间态与淀粉样纤维的形成有关,而淀粉样纤维是多种神经退行性疾病的病因。因此,防止折叠中间体的聚集是需要克服的最重要问题之一。最近,我们以formin结合蛋白28(FBP28)的WW结构域为例,研究了中间态形成的起源及预防方法。我们证明,用天冬氨酸26或色氨酸26取代亮氨酸26(在约15%的折叠轨迹中),可以在低于熔点的温度下,将折叠模式从三态折叠(FBP28 WW结构域(野生型)及其突变体的主要折叠模式)转变为两态或下坡折叠。在此,为了更好地理解中间体形成/消除的物理过程,(i)研究了这些突变体(L26D和L26W)在折叠、错误折叠和非折叠轨迹中β链形成的动力学和能量学;(ii)根据广义离散非线性薛定谔方程的扭结(异宿驻波解)分析了野生型、L26D和L26W的实验结构。我们表明,折叠轨迹中每条β链的形成都伴随着内部坐标空间中扭结的出现以及自由能的降低。特别是,下坡折叠轨迹中的自由能降低约7千卡/摩尔,而三态折叠轨迹中的自由能降低在31至48千卡/摩尔之间变化。对实验结构的扭结分析为中间体的形成提供了新的见解,这可能成为防止聚集的有用工具。

相似文献

1
New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain.
J Phys Chem B. 2020 May 14;124(19):3855-3872. doi: 10.1021/acs.jpcb.0c00628. Epub 2020 May 1.
2
Preventing fibril formation of a protein by selective mutation.
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13549-54. doi: 10.1073/pnas.1518298112. Epub 2015 Oct 19.
3
Eliminating a Protein Folding Intermediate by Tuning a Local Hydrophobic Contact.
J Phys Chem B. 2017 Apr 20;121(15):3276-3284. doi: 10.1021/acs.jpcb.6b07250. Epub 2016 Sep 29.
4
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
J Mol Biol. 2012 Jul 20;420(4-5):350-65. doi: 10.1016/j.jmb.2012.04.027. Epub 2012 May 2.
5
Folding, misfolding, and amyloid protofibril formation of WW domain FBP28.
Biophys J. 2006 Jun 1;90(11):3983-92. doi: 10.1529/biophysj.105.076406. Epub 2006 Mar 13.
7
Kinks, loops, and protein folding, with protein A as an example.
J Chem Phys. 2014 Jan 14;140(2):025101. doi: 10.1063/1.4855735.
8
Principal component analysis for protein folding dynamics.
J Mol Biol. 2009 Jan 9;385(1):312-29. doi: 10.1016/j.jmb.2008.10.018. Epub 2008 Oct 15.
9
Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18243-8. doi: 10.1073/pnas.1420914111. Epub 2014 Dec 8.
10
Competition of individual domain folding with inter-domain interaction in WW domain engineered repeat proteins.
Phys Chem Chem Phys. 2019 Nov 13;21(44):24393-24405. doi: 10.1039/c8cp07775d.

引用本文的文献

1
Exploring Structural Flexibility and Stability of α-Synuclein by the Landau-Ginzburg-Wilson Approach.
J Phys Chem B. 2022 Sep 15;126(36):6878-6890. doi: 10.1021/acs.jpcb.2c04651. Epub 2022 Sep 2.
2
Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics.
J Chem Theory Comput. 2021 May 11;17(5):3203-3220. doi: 10.1021/acs.jctc.1c00155. Epub 2021 Apr 28.

本文引用的文献

1
Competition of individual domain folding with inter-domain interaction in WW domain engineered repeat proteins.
Phys Chem Chem Phys. 2019 Nov 13;21(44):24393-24405. doi: 10.1039/c8cp07775d.
2
Protein tertiary structure and the myoglobin phase diagram.
Sci Rep. 2019 Jul 25;9(1):10819. doi: 10.1038/s41598-019-47317-y.
3
Ultrafast folding kinetics of WW domains reveal how the amino acid sequence determines the speed limit to protein folding.
Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8137-8142. doi: 10.1073/pnas.1900203116. Epub 2019 Apr 9.
4
A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy.
Chem Sci. 2018 Oct 3;9(48):9002-9011. doi: 10.1039/c8sc03786h. eCollection 2018 Dec 28.
5
Propagated Perturbations from a Peripheral Mutation Show Interactions Supporting WW Domain Thermostability.
Structure. 2018 Nov 6;26(11):1474-1485.e5. doi: 10.1016/j.str.2018.07.014. Epub 2018 Sep 6.
6
Protein Folding Cooperativity and Thermodynamic Barriers of the Simplest β-Sheet Fold: A Survey of WW Domains.
J Phys Chem B. 2018 Dec 13;122(49):11058-11071. doi: 10.1021/acs.jpcb.8b05198. Epub 2018 Jul 30.
7
Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation.
FEBS Lett. 2017 Oct;591(20):3265-3275. doi: 10.1002/1873-3468.12836. Epub 2017 Sep 21.
8
Thermal unfolding of myoglobin in the Landau-Ginzburg-Wilson approach.
Phys Rev E. 2016 Dec;94(6-1):062405. doi: 10.1103/PhysRevE.94.062405. Epub 2016 Dec 16.
10
Eliminating a Protein Folding Intermediate by Tuning a Local Hydrophobic Contact.
J Phys Chem B. 2017 Apr 20;121(15):3276-3284. doi: 10.1021/acs.jpcb.6b07250. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验