Department of Mathematics, Emory University, Atlanta, GA 30322;
Department of Computer Science, Emory University, Atlanta, GA 30322.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9183-9193. doi: 10.1073/pnas.1922204117. Epub 2020 Apr 9.
Mean field games (MFG) and mean field control (MFC) are critical classes of multiagent models for the efficient analysis of massive populations of interacting agents. Their areas of application span topics in economics, finance, game theory, industrial engineering, crowd motion, and more. In this paper, we provide a flexible machine learning framework for the numerical solution of potential MFG and MFC models. State-of-the-art numerical methods for solving such problems utilize spatial discretization that leads to a curse of dimensionality. We approximately solve high-dimensional problems by combining Lagrangian and Eulerian viewpoints and leveraging recent advances from machine learning. More precisely, we work with a Lagrangian formulation of the problem and enforce the underlying Hamilton-Jacobi-Bellman (HJB) equation that is derived from the Eulerian formulation. Finally, a tailored neural network parameterization of the MFG/MFC solution helps us avoid any spatial discretization. Our numerical results include the approximate solution of 100-dimensional instances of optimal transport and crowd motion problems on a standard work station and a validation using a Eulerian solver in two dimensions. These results open the door to much-anticipated applications of MFG and MFC models that are beyond reach with existing numerical methods.
平均场博弈 (MFG) 和平均场控制 (MFC) 是用于高效分析大规模相互作用代理人群体的关键多智能体模型类。它们的应用领域涵盖了经济学、金融学、博弈论、工业工程、人群运动等多个领域。在本文中,我们提供了一个灵活的机器学习框架,用于潜在 MFG 和 MFC 模型的数值求解。解决此类问题的最先进的数值方法利用空间离散化,这导致了维度的诅咒。我们通过结合拉格朗日和欧拉观点并利用机器学习的最新进展来近似解决高维问题。更准确地说,我们使用问题的拉格朗日公式,并强制执行从欧拉公式推导出的基础哈密顿-雅可比-贝尔曼 (HJB) 方程。最后,MFG/MFC 解决方案的定制神经网络参数化有助于我们避免任何空间离散化。我们的数值结果包括在标准工作站上对最优传输和人群运动问题的 100 维实例的近似解,以及在二维中使用欧拉求解器进行验证。这些结果为 MFG 和 MFC 模型的预期应用开辟了道路,这些应用超出了现有数值方法的范围。