Mang Andreas, Ruthotto Lars
Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, USA. (AM is now with the Department of Mathematics at the University of Houston).
Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA.
SIAM J Sci Comput. 2017;39(5):B860-B885. doi: 10.1137/17M1114132. Epub 2017 Sep 26.
We present an efficient solver for diffeomorphic image registration problems in the framework of (LDDMM). We use an optimal control formulation, in which the velocity field of a hyperbolic PDE needs to be found such that the distance between the final state of the system (the transformed/transported template image) and the observation (the reference image) is minimized. Our solver supports both stationary and non-stationary (i.e., transient or time-dependent) velocity fields. As transformation models, we consider both the transport equation (assuming intensities are preserved during the deformation) and the continuity equation (assuming mass-preservation). We consider the reduced form of the optimal control problem and solve the resulting unconstrained optimization problem using a discretize-then-optimize approach. A key contribution is the elimination of the PDE constraint using a Lagrangian hyperbolic PDE solver. Lagrangian methods rely on the concept of characteristic curves. We approximate these curves using a fourth-order Runge-Kutta method. We also present an efficient algorithm for computing the derivatives of the final state of the system with respect to the velocity field. This allows us to use fast Gauss-Newton based methods. We present quickly converging iterative linear solvers using spectral preconditioners that render the overall optimization efficient and scalable. Our method is embedded into the image registration framework FAIR and, thus, supports the most commonly used similarity measures and regularization functionals. We demonstrate the potential of our new approach using several synthetic and real world test problems with up to 14.7 million degrees of freedom.
我们提出了一种在(LDDMM)框架下用于微分同胚图像配准问题的高效求解器。我们采用最优控制公式,其中需要找到一个双曲型偏微分方程的速度场,以使系统的最终状态(变换/传输后的模板图像)与观测值(参考图像)之间的距离最小化。我们的求解器支持平稳和非平稳(即瞬态或与时间相关)速度场。作为变换模型,我们既考虑传输方程(假设在变形过程中强度保持不变),也考虑连续性方程(假设质量守恒)。我们考虑最优控制问题的简化形式,并使用先离散后优化的方法来求解由此产生的无约束优化问题。一个关键贡献是使用拉格朗日双曲型偏微分方程求解器消除偏微分方程约束。拉格朗日方法依赖于特征曲线的概念。我们使用四阶龙格 - 库塔方法来近似这些曲线。我们还提出了一种用于计算系统最终状态相对于速度场的导数的高效算法。这使我们能够使用基于快速高斯 - 牛顿的方法。我们提出了使用谱预条件器的快速收敛迭代线性求解器,使整体优化高效且可扩展。我们的方法被嵌入到图像配准框架FAIR中,并因此支持最常用的相似性度量和正则化泛函。我们使用几个具有高达1470万自由度的合成和实际测试问题展示了我们新方法的潜力。