Li Yong-Ke, Zhang Geng, Lu Wang-Ting, Cao Fei-Fei
Department of Chemistry College of Science Huazhong Agricultural University 430070 Wuhan P. R. China.
College of Resources and Environment Huazhong Agricultural University 430070 Wuhan P. R. China.
Adv Sci (Weinh). 2020 Feb 5;7(7):1902034. doi: 10.1002/advs.201902034. eCollection 2020 Apr.
It is a great challenge to fabricate electrode with simultaneous high activity for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a high-performance bifunctional electrode formed by vertically depositing a porous nanoplate array on the surface of nickel foam is provided, where the nanoplate is made up by the interconnection of trinary Ni-Fe-Mo suboxides and Ni nanoparticles. The amorphous Ni-Fe-Mo suboxide and its in situ transformed amorphous Ni-Fe-Mo (oxy)hydroxide acts as the main active species for HER and OER, respectively. The conductive network built by Ni nanoparticles provides rapid electron transfer to active sites. Moreover, the hydrophilic and aerophobic electrode surface together with the hierarchical pore structure facilitate mass transfer. The corresponding water electrolyzer demonstrates low cell voltage (1.50 V @ 10 mA cm and 1.63 V @ 100 mA cm) with high durability at 500 mA cm for at least 100 h in 1 m KOH.
制备同时对析氢反应(HER)和析氧反应(OER)具有高活性的电极是一项巨大的挑战。在此,提供了一种通过在泡沫镍表面垂直沉积多孔纳米板阵列形成的高性能双功能电极,其中纳米板由三元Ni-Fe-Mo亚氧化物和Ni纳米颗粒相互连接组成。非晶态Ni-Fe-Mo亚氧化物及其原位转化的非晶态Ni-Fe-Mo(氧)氢氧化物分别作为HER和OER的主要活性物种。由Ni纳米颗粒构建的导电网络为活性位点提供快速的电子转移。此外,亲水性和憎气性的电极表面以及分级孔隙结构促进了传质。相应的水电解槽在1 m KOH中于500 mA cm下至少100 h表现出低电池电压(10 mA cm时为1.50 V,100 mA cm时为1.63 V)且具有高耐久性。