School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
J Environ Manage. 2020 Jul 1;265:110504. doi: 10.1016/j.jenvman.2020.110504. Epub 2020 Apr 6.
Herein we report the fabrication of novel BiWO/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The BiWO/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured BiWO/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of BiWO/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10A/cm) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure BiWO, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and BiWO, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.
本文报告了一种新型 BiWO/ZnO 异质结构杂化物的制备,用于在光照下从废水中降解有机污染物和光电化学(PEC)水分解。BiWO/ZnO 光催化剂是通过简单且环保的水热法合成的,无需使用任何表面活性剂。从光催化实验来看,在太阳光照下,异质结构 BiWO/ZnO 纳米杂化物催化剂对罗丹明 B(RhB)降解表现出相当好的光催化性能。BWZ-20 纳米复合材料在大约 50 分钟内对 RhB 染料的光降解率高达 99%。此外,BWZ-20 光电极的电荷转移电阻比其他制备的样品低,表明其适合 PEC 水分解。在太阳光照下评估了 BiWO/ZnO 光电电极的光电流密度。BWZ-20 光电电极在+0.3 V vs. Ag/AgCl 时表现出显著的光电流密度(0.45×10A/cm),这比纯 BiWO 高约 1036 倍,比纯 ZnO 高约 4.8 倍。这种改进的光催化和 PEC 活性主要归因于 ZnO 和 BiWO 之间形成的界面、优异的光吸收能力、低电荷转移电阻、显著的载流子产生、电荷的易迁移以及光生载流子复合的抑制。