School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
Chemosphere. 2021 Apr;268:129346. doi: 10.1016/j.chemosphere.2020.129346. Epub 2020 Dec 16.
At present, sustainable water supply and energy generation are the most important challenges faced by humankind globally. Thus, it is crucial to progress ecological techniques for sustainable removal of organic pollutants from wastewater and generation of hydrogen as an alternative to fossil fuels. In this study, zinc tungsten oxide (ZnWO) nanorods, bismuth tungsten oxide (BiWO) nanoflakes, and BiWO/ZnWO (BO-ZO) nanocomposites were prepared via a simple hydrothermal approach. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance spectroscopy, and electrochemical analyses were conducted to confirm the formation of the BO-ZO heterostructure. The structural and morphological analyses revealed that the ZnWO nanorods were moderately dispersed on the BiWO nanoflakes. The bandgap tuning of BO-ZO nanocomposite confirmed the establishment of the heterostructure with band bending properties. The BO-ZO nanocomposite could degrade 99.52% of methylene blue (MB) within 60 min upon solar-light illumination. The photoelectrochemical (PEC) measurement results showed that the BO-ZO nanocomposite showed low charge-transfer resistance and high photocurrent response with good stability. The BO-ZO photoanode showed a low charge-transfer resistance of 35.33 Ω and high photocurrent density of 0.1779 mA/cm in comparison with Ag/AgCl in a 0.1 M NaSO electrolyte under solar-light illumination. The MB photocatalytic degradation and PEC water oxidation mechanisms of the nanocomposite were investigated.
目前,全球人类面临的最大挑战是可持续的供水和能源供应。因此,开发生态技术以可持续地去除废水中的有机污染物并生产氢气作为化石燃料的替代品至关重要。在本研究中,通过简单的水热法制备了锌钨氧化物(ZnWO)纳米棒、钨酸铋(BiWO)纳米薄片和 BiWO/ZnWO(BO-ZO)纳米复合材料。通过 X 射线衍射、扫描电子显微镜、透射电子显微镜、高分辨率透射电子显微镜、漫反射光谱和电化学分析证实了 BO-ZO 异质结构的形成。结构和形态分析表明,ZnWO 纳米棒适度分散在 BiWO 纳米薄片上。BO-ZO 纳米复合材料的能带隙调谐证实了具有能带弯曲特性的异质结构的建立。BO-ZO 纳米复合材料在太阳光照射下 60 分钟内可降解 99.52%的亚甲基蓝(MB)。光电化学(PEC)测量结果表明,BO-ZO 纳米复合材料具有低电荷转移电阻和高光电流响应,稳定性良好。与 Ag/AgCl 相比,在 0.1M NaSO 电解质中,BO-ZO 光阳极在太阳光照射下的电荷转移电阻低 35.33Ω,光电流密度高 0.1779mA/cm。研究了该纳米复合材料的 MB 光催化降解和 PEC 水氧化机制。