Wang Gang, Chen Yufei
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):203-213. doi: 10.1109/TNNLS.2020.2978031. Epub 2021 Jan 4.
While point set registration has been studied in many areas of computer vision for decades, registering points encountering different degradations remains a challenging problem. In this article, we introduce a robust point pattern matching method, termed spatially coherent matching (SCM). The SCM algorithm consists of recovering correspondences and learning nonrigid transformations between the given model and scene point sets while preserving the local neighborhood structure. Precisely, the proposed SCM starts with the initial matches that are contaminated by degradations (e.g., deformation, noise, occlusion, rotation, multiview, and outliers), and the main task is to recover the underlying correspondences and learn the nonrigid transformation alternately. Based on unsupervised manifold learning, the challenging problem of point set registration can be formulated by the Gaussian fields criterion under a local preserving constraint, where the neighborhood structure could be preserved in each transforming. Moreover, the nonrigid transformation is modeled in a reproducing kernel Hilbert space, and we use a kernel approximation strategy to boost efficiency. Experimental results demonstrate that the proposed approach robustly rejecting mismatches and registers complex point set pairs containing large degradations.
尽管点集配准在计算机视觉的许多领域已经研究了几十年,但对存在不同退化情况的点进行配准仍然是一个具有挑战性的问题。在本文中,我们介绍了一种鲁棒的点模式匹配方法,称为空间相干匹配(SCM)。SCM算法包括恢复对应关系以及在保留局部邻域结构的同时学习给定模型与场景点集之间的非刚性变换。具体而言,所提出的SCM从受退化影响(例如变形、噪声、遮挡、旋转、多视图和离群点)的初始匹配开始,主要任务是交替恢复潜在的对应关系并学习非刚性变换。基于无监督流形学习,点集配准这一具有挑战性的问题可以在局部保持约束下通过高斯场准则来表述,其中在每次变换中都可以保留邻域结构。此外,非刚性变换在再生核希尔伯特空间中建模,并且我们使用核近似策略来提高效率。实验结果表明,所提出的方法能够稳健地拒绝不匹配情况,并对包含大量退化的复杂点集对进行配准。