Suppr超能文献

基于空间约束高斯场的鲁棒非刚性点集配准。

Robust Non-Rigid Point Set Registration Using Spatially Constrained Gaussian Fields.

出版信息

IEEE Trans Image Process. 2017 Apr;26(4):1759-1769. doi: 10.1109/TIP.2017.2658947. Epub 2017 Jan 25.

Abstract

Estimating transformations from degraded point sets is necessary for many computer vision and pattern recognition applications. In this paper, we propose a robust non-rigid point set registration method based on spatially constrained context-aware Gaussian fields. We first construct a context-aware representation (e.g., shape context) for assignment initialization. Then, we use a graph Laplacian regularized Gaussian fields to estimate the underlying transformation from the likely correspondences. On the one hand, the intrinsic manifold is considered and used to preserve the geometrical structure, and a priori knowledge of the point set is extracted. On the other hand, by using the deterministic annealing, the presented method is extended to a projected high-dimensional feature space, i.e., reproducing kernel Hilbert space through a kernel trick to solve the transformation, in which the local structure is propagated by the coarse-to-fine scaling strategy. In this way, the proposed method gradually recovers much more correct correspondences, and then estimates the transformation parameters accurately and robustly when facing degradations. Experimental results on 2D and 3D synthetic and real data (point sets) demonstrate that the proposed method reaches better performance than the state-of-the-art algorithms.

摘要

从退化的点集估计变换对于许多计算机视觉和模式识别应用是必要的。在本文中,我们提出了一种基于空间约束上下文感知高斯场的鲁棒非刚性点集配准方法。我们首先为分配初始化构建一个上下文感知表示(例如形状上下文)。然后,我们使用图拉普拉斯正则化高斯场来从可能的对应关系中估计潜在的变换。一方面,考虑并利用内在流形来保持几何结构,并提取点集的先验知识。另一方面,通过使用确定性退火,该方法被扩展到一个投影的高维特征空间,即通过核技巧在再生核希尔伯特空间中解决变换,其中通过粗到细的缩放策略传播局部结构。通过这种方式,该方法在面对退化时可以逐渐恢复更多正确的对应关系,然后准确而稳健地估计变换参数。在二维和三维合成和真实数据(点集)上的实验结果表明,该方法的性能优于最先进的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验