Suppr超能文献

体内磁共振指纹快速深度学习定量方法的发展。

Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo.

机构信息

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China.

Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China.

出版信息

Magn Reson Imaging. 2020 Jul;70:81-90. doi: 10.1016/j.mri.2020.03.009. Epub 2020 Apr 7.

Abstract

PURPOSE

A deep neural network was developed for magnetic resonance fingerprinting (MRF) quantification. This study aimed at extending previous studies of deep learning MRF to in vivo applications, allowing sub-second computation time for large-scale data.

METHODS

We applied the deep learning methodology based on our previously published multi-layer perceptron. The number of layers was four, which was optimized to balance the model capacity and noise robustness. The training sets were obtained from MRF dictionaries with 9000 to 28,000 atoms, depending on the desired T1 and T2 ranges. The simulated MRF undersampling artifact based on the k-space acquisition scheme and noise were both added to the training data to reduce the error in estimates.

RESULTS

The neural network achieved high fidelity (R2 _ 0.98) as compared to the T1 and T2 values of the ISMRM standardized phantom. In brain MRF experiment, the model trained with simulated artifacts and noise showed less error compared to that without. The in vivo application of our neural network for liver and prostate were also demonstrated. For an MRF slice with 256 _ 256 image resolution, the computation time of our neural network was 0.12 s, compared with the _ 28 s-pre-slice for the conventional dictionary matching method.

CONCLUSION

Our neural network achieved fast computation speed for MRF quantification. The model trained with simulated artifacts and noise showed less error and achieved optimal performance for phantom experiment and in vivo normal brain and liver, and prostate cancer patient.

摘要

目的

开发了一种用于磁共振指纹识别(MRF)定量的深度神经网络。本研究旨在将深度学习 MRF 的先前研究扩展到体内应用,以便对大规模数据进行亚秒级计算。

方法

我们应用了基于先前发表的多层感知器的深度学习方法。层数为 4 层,通过优化来平衡模型容量和噪声稳健性。训练集是从具有 9000 到 28000 个原子的 MRF 字典中获得的,具体取决于所需的 T1 和 T2 范围。基于 k 空间采集方案和噪声模拟的 MRF 欠采样伪影被添加到训练数据中,以减少估计中的误差。

结果

与 ISMRM 标准化体模的 T1 和 T2 值相比,神经网络具有很高的保真度(R2 _ 0.98)。在大脑 MRF 实验中,与未添加模拟伪影和噪声的模型相比,经过训练的模型显示出较小的误差。还演示了我们的神经网络在肝脏和前列腺中的体内应用。对于具有 256 _ 256 图像分辨率的 MRF 切片,我们的神经网络的计算时间为 0.12s,而传统字典匹配方法的预切片时间为 _ 28s。

结论

我们的神经网络实现了 MRF 定量的快速计算速度。经过模拟伪影和噪声训练的模型在体模实验和正常大脑、肝脏以及前列腺癌患者的体内应用中显示出较小的误差,并达到了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验