Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19355;
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19355.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9384-9392. doi: 10.1073/pnas.1921968117. Epub 2020 Apr 10.
Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.
Hsp104 为 AAA+ 超家族蛋白分子机器执行的许多重要蛋白质稳态功能提供了一个有价值的模型。我们开发并使用了一种强大的氢交换质谱(HX MS)分析方法,即使在功能循环过程中,该方法也可以提供有关 Hsp104 分子机械结构、动态和能量学的位置分辨信息。HX MS 表明,ATP 酶循环受到 NBD1 中 ADP 释放的限速。中间结构域(MD)通过减缓 ADP 释放来调节 Hsp104 的活性。突变增强会加速 ADP 释放,从而提高 ATP 酶活性。它减少了开放状态的时间,从而减少了底物蛋白的损失。在活跃的循环中,Hsp104 反复在整个六聚体封闭和开放状态之间转换。在不同的条件下,开放/关闭平衡的转变可能导致过早的底物损失、正常加工或产生强大的拉力。HX MS 以近残基分辨率揭示了这些功能的机制。