Suppr超能文献

Hsp104 功能调控和增效的结构和动力学基础。

Structural and kinetic basis for the regulation and potentiation of Hsp104 function.

机构信息

Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19355;

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19355.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9384-9392. doi: 10.1073/pnas.1921968117. Epub 2020 Apr 10.

Abstract

Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.

摘要

Hsp104 为 AAA+ 超家族蛋白分子机器执行的许多重要蛋白质稳态功能提供了一个有价值的模型。我们开发并使用了一种强大的氢交换质谱(HX MS)分析方法,即使在功能循环过程中,该方法也可以提供有关 Hsp104 分子机械结构、动态和能量学的位置分辨信息。HX MS 表明,ATP 酶循环受到 NBD1 中 ADP 释放的限速。中间结构域(MD)通过减缓 ADP 释放来调节 Hsp104 的活性。突变增强会加速 ADP 释放,从而提高 ATP 酶活性。它减少了开放状态的时间,从而减少了底物蛋白的损失。在活跃的循环中,Hsp104 反复在整个六聚体封闭和开放状态之间转换。在不同的条件下,开放/关闭平衡的转变可能导致过早的底物损失、正常加工或产生强大的拉力。HX MS 以近残基分辨率揭示了这些功能的机制。

相似文献

1
Structural and kinetic basis for the regulation and potentiation of Hsp104 function.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9384-9392. doi: 10.1073/pnas.1921968117. Epub 2020 Apr 10.
2
Hydrogen exchange reveals Hsp104 architecture, structural dynamics, and energetics in physiological solution.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7333-7342. doi: 10.1073/pnas.1816184116. Epub 2019 Mar 27.
3
Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2732-7. doi: 10.1073/pnas.261693199. Epub 2002 Feb 26.
4
Functional analysis of proposed substrate-binding residues of Hsp104.
PLoS One. 2020 Mar 10;15(3):e0230198. doi: 10.1371/journal.pone.0230198. eCollection 2020.
5
Structural and mechanistic insights into Hsp104 function revealed by synchrotron X-ray footprinting.
J Biol Chem. 2020 Feb 7;295(6):1517-1538. doi: 10.1074/jbc.RA119.011577. Epub 2019 Dec 27.
6
A conserved strategy for structure change and energy transduction in Hsp104 and other AAA+ protein motors.
J Biol Chem. 2021 Sep;297(3):101066. doi: 10.1016/j.jbc.2021.101066. Epub 2021 Aug 9.
8
Mechanistic Insights into Hsp104 Potentiation.
J Biol Chem. 2016 Mar 4;291(10):5101-15. doi: 10.1074/jbc.M115.707976. Epub 2016 Jan 8.
9
Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104.
J Biol Chem. 2004 Jul 9;279(28):29139-46. doi: 10.1074/jbc.M403777200. Epub 2004 May 5.
10
Processing of proteins by the molecular chaperone Hsp104.
J Mol Biol. 2007 Jul 20;370(4):674-86. doi: 10.1016/j.jmb.2007.04.070. Epub 2007 May 5.

引用本文的文献

2
Design principles to tailor Hsp104 therapeutics.
Cell Rep. 2024 Dec 24;43(12):115005. doi: 10.1016/j.celrep.2024.115005. Epub 2024 Dec 12.
4
Design principles to tailor Hsp104 therapeutics.
bioRxiv. 2024 Apr 28:2024.04.26.591398. doi: 10.1101/2024.04.26.591398.
7
Tuning Hsp104 specificity to selectively detoxify α-synuclein.
Mol Cell. 2023 Sep 21;83(18):3314-3332.e9. doi: 10.1016/j.molcel.2023.07.029. Epub 2023 Aug 24.
8
AAA+ proteins: one motor, multiple ways to work.
Biochem Soc Trans. 2022 Apr 29;50(2):895-906. doi: 10.1042/BST20200350.
9
Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox.
Biophys Chem. 2021 Dec;279:106682. doi: 10.1016/j.bpc.2021.106682. Epub 2021 Sep 29.
10
Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation.
Front Mol Biosci. 2021 May 4;8:681439. doi: 10.3389/fmolb.2021.681439. eCollection 2021.

本文引用的文献

1
Processive extrusion of polypeptide loops by a Hsp100 disaggregase.
Nature. 2020 Feb;578(7794):317-320. doi: 10.1038/s41586-020-1964-y. Epub 2020 Jan 29.
2
The molecular principles governing the activity and functional diversity of AAA+ proteins.
Nat Rev Mol Cell Biol. 2020 Jan;21(1):43-58. doi: 10.1038/s41580-019-0183-6. Epub 2019 Nov 21.
3
Mining Disaggregase Sequence Space to Safely Counter TDP-43, FUS, and α-Synuclein Proteotoxicity.
Cell Rep. 2019 Aug 20;28(8):2080-2095.e6. doi: 10.1016/j.celrep.2019.07.069.
4
ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis.
Anal Chem. 2019 Jun 4;91(11):7474-7481. doi: 10.1021/acs.analchem.9b01682. Epub 2019 May 22.
5
Hsp104 and Potentiated Variants Can Operate as Distinct Nonprocessive Translocases.
Biophys J. 2019 May 21;116(10):1856-1872. doi: 10.1016/j.bpj.2019.03.035. Epub 2019 Apr 5.
6
Hydrogen exchange reveals Hsp104 architecture, structural dynamics, and energetics in physiological solution.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7333-7342. doi: 10.1073/pnas.1816184116. Epub 2019 Mar 27.
7
Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase.
Cold Spring Harb Perspect Biol. 2019 Aug 1;11(8):a034033. doi: 10.1101/cshperspect.a034033.
8
Cryo-EM Structures of the Hsp104 Protein Disaggregase Captured in the ATP Conformation.
Cell Rep. 2019 Jan 2;26(1):29-36.e3. doi: 10.1016/j.celrep.2018.12.037.
9
Structure of Calcarisporiella thermophila Hsp104 Disaggregase that Antagonizes Diverse Proteotoxic Misfolding Events.
Structure. 2019 Mar 5;27(3):449-463.e7. doi: 10.1016/j.str.2018.11.001. Epub 2018 Dec 27.
10
Reference Parameters for Protein Hydrogen Exchange Rates.
J Am Soc Mass Spectrom. 2018 Sep;29(9):1936-1939. doi: 10.1007/s13361-018-2021-z. Epub 2018 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验