Suppr超能文献

氢交换揭示了生理溶液中 Hsp104 的结构、结构动力学和能量学。

Hydrogen exchange reveals Hsp104 architecture, structural dynamics, and energetics in physiological solution.

机构信息

Johnson Research Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7333-7342. doi: 10.1073/pnas.1816184116. Epub 2019 Mar 27.

Abstract

Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle.

摘要

Hsp104 是一种大型 AAA+ 分子机器,它可以通过将底物蛋白拉入其中心孔,来挽救被困在无定形聚集体和稳定淀粉样中的蛋白质。最近的冷冻电镜研究以高分辨率成像 Hsp104。我们使用氢交换质谱分析(HX MS)来解析和表征 Hsp104 的所有功能活性和非活性元件,其中许多元件无法通过冷冻电镜研究。在全局水平上,HX MS 证实 Hsp104 六聚体中的一个非规范的互聚物界面作为冷冻电镜揭示的螺旋构象的标志物,并测量其在 ATP 水解下的快速构象循环。其他发现使调节中间结构域的表观可变性得以重新解释。就详细机制而言,HX MS 确定了每个 Hsp104 结构元件对不同结合的腺苷核苷酸(ADP、ATP、AMPPNP 和 ATPγS)的响应。它们最敏感地由两个 Walker A 核苷酸结合片段区分。与 ATP 类似物 ATPγS 的结合会强烈重构 Walker A 片段,并驱动全局开-闭/伸展转变。全局转变将部分 ATP/ATPγS 结合能传递到较远的中心孔。孔变窄,酪氨酸和其他与孔相关的环变得更加紧密,这似乎反映了需要能量的定向拉力,该拉力可将底物蛋白移位。ATP 水解为 ADP 使 Hsp104 能够松弛回其最低能量的开放状态,准备重新开始循环。

相似文献

2
Structural and kinetic basis for the regulation and potentiation of Hsp104 function.Hsp104 功能调控和增效的结构和动力学基础。
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9384-9392. doi: 10.1073/pnas.1921968117. Epub 2020 Apr 10.
5
Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104.AAA+解聚酶Hsp104的棘轮状多肽转运机制
Science. 2017 Jul 21;357(6348):273-279. doi: 10.1126/science.aan1052. Epub 2017 Jun 15.
6
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104.Hsp104朊病毒解聚酶活性的机制与结构见解
J Mol Biol. 2016 May 8;428(9 Pt B):1870-85. doi: 10.1016/j.jmb.2015.11.016. Epub 2015 Dec 1.
9
Mechanistic Insights into Hsp104 Potentiation.Hsp104增强作用的机制性见解。
J Biol Chem. 2016 Mar 4;291(10):5101-15. doi: 10.1074/jbc.M115.707976. Epub 2016 Jan 8.
10
Motor mechanism for protein threading through Hsp104.蛋白质穿过Hsp104的运动机制
Mol Cell. 2009 Apr 10;34(1):81-92. doi: 10.1016/j.molcel.2009.02.026.

引用本文的文献

2
Design principles to tailor Hsp104 therapeutics.定制Hsp104疗法的设计原则。
Cell Rep. 2024 Dec 24;43(12):115005. doi: 10.1016/j.celrep.2024.115005. Epub 2024 Dec 12.
5
Tuning Hsp104 specificity to selectively detoxify α-synuclein.调节 Hsp104 的特异性以选择性解毒 α-突触核蛋白。
Mol Cell. 2023 Sep 21;83(18):3314-3332.e9. doi: 10.1016/j.molcel.2023.07.029. Epub 2023 Aug 24.
8
AAA+ proteins: one motor, multiple ways to work.AAA+ 蛋白:一个马达,多种工作方式。
Biochem Soc Trans. 2022 Apr 29;50(2):895-906. doi: 10.1042/BST20200350.

本文引用的文献

2
Reference Parameters for Protein Hydrogen Exchange Rates.蛋白质氢交换速率的参考参数。
J Am Soc Mass Spectrom. 2018 Sep;29(9):1936-1939. doi: 10.1007/s13361-018-2021-z. Epub 2018 Jul 18.
4
Folding of maltose binding protein outside of and in GroEL.麦芽糖结合蛋白在 GroEL 内外的折叠。
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):519-524. doi: 10.1073/pnas.1716168115. Epub 2018 Jan 2.
5
Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104.AAA+解聚酶Hsp104的棘轮状多肽转运机制
Science. 2017 Jul 21;357(6348):273-279. doi: 10.1126/science.aan1052. Epub 2017 Jun 15.
6
Avidity for Polypeptide Binding by Nucleotide-Bound Hsp104 Structures.核苷酸结合型Hsp104结构对多肽结合的亲和力。
Biochemistry. 2017 Apr 18;56(15):2071-2075. doi: 10.1021/acs.biochem.7b00225. Epub 2017 Apr 10.
9
Hydrogen Exchange Mass Spectrometry.氢交换质谱法
Methods Enzymol. 2016;566:335-56. doi: 10.1016/bs.mie.2015.06.035. Epub 2015 Jul 27.
10
ClpB N-terminal domain plays a regulatory role in protein disaggregation.ClpB蛋白的N端结构域在蛋白质解聚过程中发挥调控作用。
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6872-81. doi: 10.1073/pnas.1512783112. Epub 2015 Nov 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验