Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA.
Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Orthopedic Surgery, University of California Davis Health, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Avenue, Suite 2000, Sacramento, CA 95817, USA.
J Control Release. 2020 Jul 10;323:47-58. doi: 10.1016/j.jconrel.2020.04.007. Epub 2020 Apr 9.
Inflammation following joint trauma contributes to cartilage degradation and progression of post traumatic osteoarthritis (PTOA). Therefore, drug delivery vehicles that deliver effective anti-inflammatory treatments have the potential to prevent PTOA. We have developed solid and hollow, thermoresponsive nanoparticles for the controlled release of our anti-inflammatory MK2-inhibiting (MK2i) peptide for intra-articular injection to halt inflammation that contributes to the advancement of PTOA. This system exploits the thermosensitive characteristic of N-isopropyl acrylamide (NIPAm) to transition phases when passing through its lower critical solution temperature (LCST). The nanoparticles (NPs) swell below the LCST and constrict above it. Non-crosslinked poly(NIPAm) (pNIPAm), held above its LCST, formed hydrophobic cores around which shells composed of NIPAm, degradable crosslinker N, N'-bis (acryloyl) cystamine (BAC), sulfated 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and acrylic acid (AAc) were polymerized. Removal of the non-crosslinked pNIPAm cores via diffusion produced thermosensitive, degradable nanoparticles with low density, or hollow, cores. The data presented here revealed low-density, termed hollow, nanoparticles (hNPs) load and release significantly more MK2i than solid nanoparticles (sNPs). Furthermore, drug loading below the LCST of NIPAm results in roughly 2.5 times more therapeutic encapsulation compared to loading particles in their constricted state. Hollow nanoparticles increase drug loading compared to solid nanoparticles, are taken up into chondrocytes within 24 h, cleared from the cells within 6 days, significantly decrease the secretion of the proinflammatory cytokine IL-6, and, via intra-articular injection, are successfully delivered into the joint space of rats. The peptide loaded nanoparticles provide a reproducible platform for intra-articular delivery of therapeutics.
关节创伤后的炎症会导致软骨降解和创伤后骨关节炎(PTOA)的进展。因此,能够输送有效抗炎治疗的药物输送载体有可能预防 PTOA。我们已经开发出了固态和空心的、温度响应性纳米粒子,用于我们的抗炎 MK2 抑制(MK2i)肽的控释,用于关节内注射以阻止导致 PTOA 进展的炎症。该系统利用了 N-异丙基丙烯酰胺(NIPAm)的热敏特性,使其在通过其低临界溶液温度(LCST)时转变相。纳米粒子(NPs)在 LCST 以下膨胀,在 LCST 以上收缩。非交联的聚(NIPAm)(pNIPAm)在其 LCST 以上,在其周围形成由 NIPAm、可降解交联剂 N、N'-双(丙烯酰基)胱胺(BAC)、硫酸 2-丙烯酰胺基-2-甲基-1-丙磺酸(AMPS)和丙烯酸(AAc)组成的壳。通过扩散去除非交联的 pNIPAm 核产生了具有低密度的热敏可降解纳米粒子,或空心核。这里呈现的数据表明,低密度的空心纳米粒子(hNPs)比实心纳米粒子(sNPs)装载和释放的 MK2i 多得多。此外,在 NIPAm 的 LCST 以下进行药物装载会导致与在其收缩状态下装载颗粒相比,大约有 2.5 倍的治疗性封装。空心纳米粒子与实心纳米粒子相比增加了药物装载量,在 24 小时内被软骨细胞摄取,在 6 天内从细胞中清除,显著减少了促炎细胞因子 IL-6 的分泌,并通过关节内注射成功递送到大鼠的关节间隙。负载肽的纳米粒子为关节内输送治疗剂提供了一个可重复的平台。