Zhou Sumin, Zheng Dandan, Fan Qiyong, Yan Ying, Wang Shuo, Lei Yu, Besemer Abigail, Zhou Christina, Enke Charles
Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68135, USA.
Med Phys. 2020 Jul;47(7):3243-3249. doi: 10.1002/mp.14181. Epub 2020 May 15.
PURPOSE/OBJECTIVES: To provide an order of magnitude estimate of the minimum dose rate ( ) required by pulsed ultra-high dose rate radiotherapy (FLASH RT) using dimensional analysis.
MATERIALS/METHODS: In this study, we postulate that radiation-induced transient hypoxia inside normal tissue cells during FLASH RT results in better normal tissue sparing over conventional dose rate radiotherapy. We divide the process of cell irradiation by an ultra-short radiation pulse into three sequential phases: (a) The radiation pulse interacts with the normal tissue cells and produces radiation-induced species. (b) The radiation-induced species react with oxygen molecules and reduce the cell environmental oxygen concentration ( ). (c) Oxygen molecules, from nearest capillaries, diffuse slowly back into the resulted low regions. By balancing the radiation-induced oxygen depletion in phase II and diffusion-resulted replenishment in phase III, we can estimate the maximum allowed pulse repetition interval to produce a pulse-to-pulse superimposed reduction against the baseline . If we impose a threshold in radiosensitivity reduction to achieve clinically observable radiotherapy oxygen effect and combine the processes mentioned above, we could estimate the required for pulsed FLASH RT through dimensional analysis.
The estimated required for pulsed FLASH RT is proportional to the product of the oxygen diffusion coefficient and inside the cell, and inversely proportional to the product of the square of the oxygen diffusion distance and the drop of intracellular per unit radiation dose. Under typical conditions, our estimation matches the order of magnitude with the dose rates observed in the recent FLASH RT experiments.
The introduced in this paper can be useful when designing a FLASH RT system. Additionally, our analysis of the chemical and physical processes may provide some insights into the FLASH RT mechanism.
目的/目标:通过量纲分析对脉冲超高剂量率放疗(FLASH RT)所需的最小剂量率( )进行量级估计。
材料/方法:在本研究中,我们假设FLASH RT期间正常组织细胞内辐射诱导的短暂缺氧导致比传统剂量率放疗更好地保护正常组织。我们将超短辐射脉冲对细胞的照射过程分为三个连续阶段:(a)辐射脉冲与正常组织细胞相互作用并产生辐射诱导物质。(b)辐射诱导物质与氧分子反应并降低细胞环境氧浓度( )。(c)来自最近毛细血管的氧分子缓慢扩散回产生的低 区域。通过平衡第二阶段中辐射诱导的氧消耗和第三阶段中扩散导致的 补充,我们可以估计产生相对于基线 的逐脉冲叠加 降低所需的最大允许脉冲重复间隔。如果我们对放射敏感性降低设定一个阈值以实现临床上可观察到的放疗氧效应,并结合上述过程,我们可以通过量纲分析估计脉冲FLASH RT所需的 。
脉冲FLASH RT所需的估计 与细胞内氧扩散系数和 的乘积成正比,与氧扩散距离的平方和每单位辐射剂量的细胞内 下降的乘积成反比。在典型条件下,我们的估计与最近FLASH RT实验中观察到的剂量率量级匹配。
本文中引入的 在设计FLASH RT系统时可能有用。此外,我们对化学和物理过程的分析可能为FLASH RT机制提供一些见解。