Suppr超能文献

FLASH 超高剂量率放射治疗中的氧耗竭:分子动力学模拟。

Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation.

机构信息

Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 75031, USA.

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Med Phys. 2020 Dec;47(12):6551-6561. doi: 10.1002/mp.14548. Epub 2020 Nov 8.

Abstract

PURPOSE

We present a first-principles molecular dynamics (MD) simulation and expound upon a mechanism of oxygen depletion hypothesis to explain the mitigation of normal tissue injury observed in ultra-high-dose-rate (UHDR) FLASH radiotherapy.

METHODS

We simulated damage to a segment of DNA (also representing other biomolecules such as RNA and proteins) in a simulation box filled with O and molecules. Attoseconds physical interactions (ionizations, electronic, and vibrational excitations) were simulated by using the Monte Carlo track structure code Geant4-DNA. Immediately after ionization, ab initio Car-Parrinello molecular dynamics (CPMD) simulation was used to identify which O and molecules surrounding the DNA molecule were converted into reactive oxygen species (ROS). Subsequently, the femto- to nanosecond reactions of ROS were simulated by using MD with reactive force field (ReaxFF), to illustrate ROS merging into new types of non-reactive oxygen species (NROS) due to strong coupling among ROS. A coarse-grained model was constructed to describe the relevant collective phenomenon at the macroscopic level on ROS aggregation and formation of NROS agglomerates consistent with the underlying microscopic pathways obtained from MD simulations.

RESULTS

Time-dependent molecular simulations revealed the formation of metastable and transient spaghetti-like complexes among ROS generated at UHDR. At the higher ROS densities produced under UHDR, stranded chains (i.e., NROS) are produced, mediated through attractive electric polarity forces, hydrogen bonds, and magnetic dipole-dipole interactions among hydroxyl radicals. NROS tend to be less mobile than cellular biomolecules as opposed to the isolated and sparsely dense ROS generated at conventional dose rates (CDR). We attribute this effect to the suppression of biomolecular damage induced per particle track. At a given oxygen level, as the dose rate increases, the size and number of NROS chains increase, and correspondingly the population of toxic ROS components decreases. Similarly, at a given high dose rate, as the oxygen level increases, so do the size and number of NROS chains until an optimum level of oxygen is reached. Beyond that level, the amount of oxygen present may be sufficient to saturate the production of NROS chains, thereby reversing the sparing effects of UHDRs.

CONCLUSIONS

We showed that oxygen depletion, hypothesized to lead to lower normal-tissue toxicity at FLASH dose rates, takes place within femto- to nanoseconds after irradiation. The mechanism is governed by the slow dynamics of chains of ROS complexes (NROS). Under physoxic (≈ 4-5% oxygen) conditions (i.e., in normal tissues), NROS are more abundant than in hypoxic conditions (e.g., <0.3% in parts of tumors), suggesting that biomolecular damage would be reduced in an environment with physoxic oxygen levels. Hence irradiation at UHDRs would be more effective for sparing physoxic normal tissues but not tumors containing regions of hypoxia. At much higher levels of oxygen (e.g., >10-15%), oxygen depletion by UHDRs may not be sufficient for tissue sparing.

摘要

目的

我们提出了一种基于第一性原理的分子动力学(MD)模拟,并阐述了氧耗竭假说的机制,以解释超高剂量率(UHDR)FLASH 放疗中观察到的正常组织损伤减轻的现象。

方法

我们模拟了在充满 O 和 分子的模拟盒中 DNA 片段(也代表其他生物分子,如 RNA 和蛋白质)的损伤。使用蒙特卡罗轨迹结构代码 Geant4-DNA 模拟阿秒级别的物理相互作用(电离、电子和振动激发)。在电离后立即,使用从头算 Car-Parrinello 分子动力学(CPMD)模拟来确定围绕 DNA 分子的哪些 O 和 分子转化为活性氧物质(ROS)。随后,使用具有反应力场(ReaxFF)的 MD 模拟 ROS 的飞秒至纳秒反应,以说明 ROS 由于 ROS 之间的强耦合而合并成新类型的非活性氧物质(NROS)。构建了一个粗粒度模型来描述与 ROS 聚集和 NROS 聚集体形成相关的宏观水平上的相关集体现象,这与从 MD 模拟中获得的潜在微观途径一致。

结果

时间依赖性分子模拟揭示了在 UHDR 下产生的 ROS 之间形成亚稳态和瞬态的意大利面条状复合物。在 UHDR 下产生的更高 ROS 密度下,通过吸引力的极性力、氢键和羟基自由基之间的磁偶极子-偶极子相互作用,产生了链状(即 NROS)。与在常规剂量率(CDR)下产生的孤立且稀疏的 ROS 相比,NROS 的流动性较差。我们将这种效应归因于每个粒子轨迹诱导的生物分子损伤的抑制。在给定的氧水平下,随着剂量率的增加,NROS 链的大小和数量增加,相应地,有毒 ROS 成分的数量减少。同样,在给定的高剂量率下,随着氧水平的增加,NROS 链的大小和数量也增加,直到达到最佳的氧水平。超过该水平后,存在的氧气量可能足以饱和 NROS 链的产生,从而逆转 UHDR 的保护作用。

结论

我们表明,FLASH 剂量率下导致正常组织毒性降低的氧耗竭假设在辐照后纳秒至飞秒内发生。该机制受 ROS 复合物(NROS)链的缓慢动力学控制。在氧合(≈4-5% 氧)条件下(即在正常组织中),NROS 比缺氧条件下(例如,肿瘤部分中的<0.3%)更丰富,这表明在具有氧合氧水平的环境中,生物分子损伤会减少。因此,在 UHDR 下进行辐照对于保护氧合正常组织更有效,但不能保护含有缺氧区域的肿瘤。在更高的氧水平(例如,>10-15%)下,UHDR 引起的氧耗竭可能不足以实现组织保护。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验