Suppr超能文献

混合金属氧化物纳米复合材料的电学、光催化及湿度传感应用

Electrical, Photocatalytic, and Humidity Sensing Applications of Mixed Metal Oxide Nanocomposites.

作者信息

Shaheen Kausar, Shah Zarbad, Khan Behramand, Omer Muhammad, Alamzeb Muhammad, Suo Hongli

机构信息

The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China.

Department of Physics, Jinnah College for Women, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan.

出版信息

ACS Omega. 2020 Mar 24;5(13):7271-7279. doi: 10.1021/acsomega.9b04074. eCollection 2020 Apr 7.

Abstract

Mixed metal oxide nanocomposites (NCs) comprising Cu-Sr (CS), Sr-Cd (SC), and Cd-Cu (CC) were fabricated via a sol-gel method. Structural investigations of fabricated samples were carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The Maxwell-Wagner model, attributing to poor conducting layers around the conducting grains, was indicated to be followed by all of the NCs while investigating the dielectric properties. The Space-charge polarization and hoping mechanism contributed to low AC conductivity at lower frequencies and high AC conductivity at higher frequencies. The as-synthesized NCs effectively degraded two toxic water contaminants, such as crystal violet (CV) and Congo red (CR). Furthermore, the NCs were also evaluated for humidity sensing measurements. All of the NCs indicated efficient response/recovery time with better stability. The extensive investigation suggested the synthesized NCs, well suited for various optical and microelectronic applications.

摘要

通过溶胶-凝胶法制备了包含铜-锶(CS)、锶-镉(SC)和镉-铜(CC)的混合金属氧化物纳米复合材料(NCs)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、漫反射光谱(DRS)和X射线光电子能谱(XPS)对制备的样品进行了结构研究。在研究介电性能时,发现所有的NCs都遵循归因于导电颗粒周围导电层较差的麦克斯韦-瓦格纳模型。空间电荷极化和跳跃机制导致在较低频率下具有低交流电导率,而在较高频率下具有高交流电导率。合成的NCs有效地降解了两种有毒的水污染物,如结晶紫(CV)和刚果红(CR)。此外,还对NCs进行了湿度传感测量评估。所有的NCs都表现出高效的响应/恢复时间和更好的稳定性。广泛的研究表明,合成的NCs非常适合各种光学和微电子应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61a7/7144153/3f35c8c5cb8f/ao9b04074_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验